
Lecture 6

CRT and the number of solutions - we have a congruence

akx
k + ak 1x

k−1 + · · ·+ a 0− 0 ≡ (mod n), ai ∈ Z

We want to know all solutions mod n, and in particular the number of solutions.
Write n = pe11 p

e2
2 . . . perr . Then solving the congruence mod m reduces to solving

it mod peii for all i. If x satisfies the congruence mod n then it is a solution of the
congruence mod peii for all i. Conversely if x e

1 is a solution mod p 1
1 and x2 is

a solution mod pe22 , etc., then the CRT says that there exists a unique x mod n
such that x ≡ xi mod peii for all i.

Now for this x, x ≡ x mod peii i , so

akx
k + ak−1x

k−1 + · · ·+ a0 ≡ akxki + ak xk−1 + + a−1 i · · · 0

≡ 0 (mod peii)

Therefore x is a solution mod n, so this process gives a bijection.

{
solutions

} {
solutions

} {
solutions

}
solutions

1 e
1

× .mod pe mod e2 . .
p2 mod p r

r
↔
{

mod n

}
In particular, the total number of solutions mod n is

∏r
of solutions mod peii

i=1

Primality Testing: Given n, we want to determine if n is prime or composite.
Input n has log n digits. We call an algorithm efficient if it’s polynomial in input
- in this case, poly(log n) steps. Obvious algorithm is to divide by every prime
starting from 2 to

√
b nc, which is O(

√
n) steps, or exp(1 log n)2 .

Test using Fermat’s Little Theorem - if n is prime and n - a, then an−1 ≡ 1
mod n.

1. Pick an integer a ∈ {2 . . . n− 1}.

2. Compute (a, n): if it is > 1, then n is composite.

3. Otherwise compute an−1: if 6≡ 1 mod a then done, n is composite. If
≡ 1 mod n, then is inconclusive. Could try another random a. There are
composite numbers that satisfy an−1 ≡ 1 mod n for all (a, n) = 1 (eg.,
561) called Carmichael numbers.

Primality, Factoring, RSA, Hensel's Lemma

1

Refinement: if an−1 ≡ 1 mod n, compute
n−1

a 2 (since n − 1 is even). If n is
prime, must equal ±1 mod n.

If
n−1

a 2 6≡ ±1 mod n, then n is composite
≡ −1 mod n, then inconclusive, go to another a

≡ 1 mod n and 4|n− 1, then repeat with
n−1

a 4

If n passes all these tests for a given a, n is a strong pseudoprime to base a. If n
is prime, it’s going to pass all these tests. If n is composite, it’s pseudoprime to
base a for at most 3

4 of all possible a (usually much smaller).

So if we pick a random a mod n then n will pass the test with probability at
most 3 . If it passes, then pick another random a. The probability of n passing k4
tests will be at most (3)k4 , which decreases exponentially with k. And so if you
do c log n trials, the at most probability goes like 1

n . So if n passes c log n trials∗

(for some large enough c ≈ 100), then probability that n is prime is very close to
1.

This is poly(log) steps, but we want a deterministic algorithm. Solved in 2002
by AKS (Agrawal, Kayal, Saxena). The main idea is that n > 2 is prime if and
only if

(x− a)n ≡ xn − a (mod n) as polynomials

Check different values of a, but there are n possible choices of a and expansion
is slow. Way to avoid is with CRT by looking at both sides mod n and modulo a
small degree polynomial.

Factorization If n is composite, how do we factor in poly(log n) time. The
obvious way is to divide by all, which is O(

√
n).

Pollard Rho Let f(x) = x2 + 1. x0 = 1, x1 = f(x0) mod n, xn = f(xn−1)
mod n gives the sequence x0, x1, . . . xi. Heuristic: if n = pm with small p then
this sequence will start repeating mod p earlier than mod n. So if xj ≡ xi mod p
but not mod n, then (xi − xj , n) will give a factor of n.

In practice only need to compute xk and x2k, x2k and x4k, etc., and check gcd.
Heuristic: if p is smallest prime factor of n, we expect to get a factor of n using
this algorithm in about

√
p steps.

Elliptic curve based factoring gives exp(c
√

log n log log n). Number field sieve
gives

1

exp(c(log n(log log n)2) 3). We still don’t have an efficient algorithm for
factoring, a fact that much of modern cryptography is based on.

Cryptography - RSA Alice and Bob (A and B) want to pass messages, and Carol
is eavesdropper. A can send a message to B, converted into bits - equivalent to
sending an integer m. Wants to encrypt the number so C can’t understand it.

2

Obvious method is to use a shared key model, where A and B have some shared
key. With a message m, A can send m + k, or m ⊕ k (where ⊕ is the bitwise
exclusive OR). B can decrypt the message by subtracting k: (m+ k)− k = m,
(m⊕ k)⊕ k = m. This is not so good if we want to send multiple messages - if C
sees m1 + k and m2 + k, then C can figure out m1 −m2, which gives her some
information about m1 and m2, which is bad. This is also not efficient (number
of keys needed grows quadratically as number of members to pass messages
between increases).

Instead, use public key cryptography. One model is RSA (Rivest, Shamir,
Adleman). The idea is that B generates two large primes p and q of about equal
size. Set N = pq.

φ(N) = φ(p)φ(q) = (p− 1)(q − 1)

Then B chooses e coprime to φ(N) and computes f = e−1 mod φ(N). B pub-
lishes N and e as his public key. If A wants to send message m, assuming
that 0 < m < N (if not, then we break into chunks), and (m,N) = 1. A then
computes me mod N and sends it to B, who decrypts it by computing (me)f

mod N . The idea is that

f = e−1

fe ≡ 1 (mod φ(N))

= 1 + kφ(N)

mef = m1+kφ(N)

= m(mφ(N))k

≡ m1k (mod N)

≡ m (mod N)

f is secret, so C has no way to compute m from me - this relies on the hardness
of factoring.

Hensel’s Lemma - this is a way to solve congruences mod pe if we know solu-
tions mod p (analog to Newton’s Method for finding roots of polynomials).

Theorem 26 (Hensel’s Lemma). Suppose that f(x) ∈ Z[x], f(a) ≡ 0 mod pj ,
and f ′(a) 6≡ 0 mod p. Then there’s a unique t mod p such that f(a + tpj) 0
mod pj+1. That is, there’s a unique solution b mod pj+1

≡
which is congruent to a mod

pj , (ie., b reduces to a mod pj , a lifts to b mod pj+1).

Proof. We’re looking for solutions b = a+ tpj where t ∈ {0, 1, . . . p− 1
j+1

} to the
congruence mod p . Want to see if one of these t works. Use Taylor expansion
around a:

(tpj)2 (tpj)n
f(a+ tpj) = f(a) + tpjf ′(a) + f ′′(a) +

2!
· · ·+ f (n)(a)

n!

3

Lemma 27.

f(a+ tpj) ≡ f(a) + tpjf ′(a) mod pj+1 if j ≥ 1

Proof. f(n)

fn! is an integer if is a polynomial with integer coefficients, and so
follows after we see that pnj ≡ 0 mod pj+1. �

(Cont’d next section)

4

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

