Lecture 24

Rational Points on Conics

Rational points on conics
(Definition) Conic: A conic is a plane curve cut by a polynomial of total degree 2

$$
a x^{2}+b y^{2}+c x y+d x+e y+f=0
$$

We usually want $a \ldots f$ to be in \mathbb{Q} or even in \mathbb{Z}. (Called "conic" because plane sections of a cone - interested in smooth conics.)

Principle - if we can find one (rational) point on a sonic, then we can parametrize all rational points, and there are infinitely many of them. Method: slope method.

Eg. $x^{2}+y^{2}=5,(1,2)$ is a trivial point. Take (x, y), slope between the two is $m=\frac{y-2}{x-1} \Rightarrow y=2+m(x-1)$. Plug into $x^{2}+y^{2}=5$

$$
\begin{aligned}
x^{2}+y^{2}=5 & \Rightarrow x^{2}=(1+m(x-1))^{2}=5 \\
& \Rightarrow x^{2}+4+4 m(x-1)+m^{2}(x-1)^{2}=5 \\
& \Rightarrow 4 m(x-1)+m^{2}(x-1)^{2}=1-x^{2}=(1-x)(1+x) \\
& \Rightarrow 4 m+m^{2}(x-1)=-(1+x)
\end{aligned}
$$

Linear in x so solve for x in terms of m, then plug into $y=2+m(x-1)$ to get both x, y in terms of m

How to tell if there are any rational points on conic (C) (doesn't always have rational points - eg., $x^{2}+y^{2}+1=0$)

$$
a x^{2}+b y^{2}+c x y+d x+e y+f=0
$$

Can make a few reductions.
Reduction 1 - homogenization: Replace x with $\frac{x}{z}, y$ with $\frac{y}{z}$, resulting in equation (H)

$$
a x^{2}+b y^{2}+c x y+d x z+e y z+f z^{2}=0
$$

Theorem 84. (C) has a rational point if and only if (H) has a non-trivial integer (x, y, z) solution with x, y, z not all 0

Proof- C to H. If (C) has a rational point, can produce $x, y, z \in \mathbb{Z}$ with solution of (H) with $z \neq 0$, so non-trivial

Proof-H to C. If (H) has a nontrivial solution, then one of x, y, z must be nonzero. If $z \neq 0$ then done. If $z=0$, say wlog $x \neq 0$. Then divide out
by x^{2} to see there's a rational point on new conic $\left(C^{\prime}\right)$ given by

$$
a+b y^{2}+c y+d z+e y z+f z^{2}=0
$$

But then, there are infinitely many, by the slope parametrization. At least one of them will have $z \neq 0$ (at most 2 solutions with $z=0$). ie., call this solution $\left(\frac{y}{x}, \frac{z}{x}\right)$ of $\left(C^{\prime}\right)$. This implies that (x, y, z) satisfies (H) with $z \neq 0$.

Reduction 1.5: (H) has a nontrivial integer solution if and only if it has a nontrivial rational solution $(\mathbb{Z} \subset \mathbb{Q}$, find common denominator of rationals to produce ints)

Reduction 2: complete squares and diagonalize

$$
\begin{aligned}
& a x^{2}+b y^{2}+c z^{2}+d x y+e y z+f x z \\
& =a(\underbrace{x+\frac{d}{2 a} y+\frac{e}{2 a} z}_{x^{\prime}})^{2}+(\ldots) y^{2}+(\ldots) y z+(\ldots) z^{2} \\
& =a x^{\prime 2}+(\ldots) y^{2}+(\ldots) y z+(\ldots) z^{2} \\
& =a x^{\prime 2}+(\ldots)(y+(\ldots) z)^{2}+(\ldots) z^{2} \\
& =a x^{\prime 2}+b^{\prime} y^{\prime 2}+c^{\prime} z^{2}=0 \quad\left(H^{\prime}\right)
\end{aligned}
$$

Point is - if (x, y, z) is rational non-trivial solution, then we get a non-trivial rational solution to $\left(H^{\prime}\right)$. Conversely if $\left(H^{\prime}\right)$ has a nontrivial rational solution, so does (H). End result - we've produced a degree 2 homogenous equation which has only x^{2}, y^{2}, z^{2} terms, where a nontrivial solution solution means that the original does as well.

So from now on assume $(H)=a x^{2}+b y^{2}+c z^{2}=0$.
Reduction 3: assume a, b, c integers (by removing common denominators). Assume that they are nonzero integers (equivalent to saying we have a smooth conic), since it's easy to solve when one of a, b, c is zero. We can assume a, b, c are squarefree and that $\operatorname{gcd}(a, b, c)=1$. Can go further - claim that we can arrange so that a, b, c are coprime in pairs, if and only if $a b c$ is squarefree.

Why? If $p \mid a, b, p \nmid c$, then replace z^{\prime} by $p z^{\prime}$, set $a=p a^{\prime}$ and $b=p b^{\prime}$, so $p a^{\prime} x^{2}+$ $p b^{\prime} y^{2}+c\left(p z^{\prime}\right)^{2}=0$, iff $a^{\prime} x^{2}+b^{\prime} y^{2}+p c z^{\prime 2}=0$ gets rid of common factor p of a, b. Keep doing this as long as a, b, c are not coprime in pairs. Terminates as at each stage, product decreases (from $p^{2} a^{\prime} b^{\prime} c$ to $p a^{\prime} b^{\prime} c$).

End result: $a x^{2}+b y^{2}+c z^{2}=0$, with $a b c \neq 0, \in \mathbb{Z}$, and squarefree

Theorem 85 (Legendre Theorem). Let a, b, c be nonzero integers such that $a b c$ is squarefree. Then $a x^{2}+b y^{2}+c z^{2}=0$ has a nontrivial integer/rational (global) solution
if and only if both these conditions are satisfied: (1) a, b, c don't all have the same sign, and (2) -ab is square $\bmod c,-b c$ is square $\bmod a$, and $-a c$ is square mod b. 1,2 called local conditions - easy to check if given an equation)

Proof-Necessity. If a, b, c have the same sign, then no real solution since x^{2}, y^{2}, z^{2} are all ≥ 0, and $a x^{2}+b y^{2}+c z^{2}=0$ only if trivial solution.

Let p be a prime dividing a. We'll show that $-b c$ is a square $\bmod p($ make assumption that there is a nontrivial integer solution to $a x^{2}+b y^{2}+c z^{2}=0$). Let (x, y, z) be nontrivial integer solution. Can get rid of common factors, so $\operatorname{gcd}(x, y, z)=1$. Then claim that x, y, z are coprime in pairs. Suppose not \Rightarrow say, l divides x, y but not $z . a x^{2}+b y^{2}$ is divisible by $l^{2} \Rightarrow l^{2}$ divides $-c z^{2} \Rightarrow$ since c is squarefree, forces $l \mid z$ so $\operatorname{gcd}(y, z)=1$. Reduce $a x^{2}+b y^{2}+c z^{2}=0 \bmod p$ to $b y^{2}+c z^{2} \equiv 0 \bmod p$. We know p cannot divide both y and z, so let's say wlog that $p \nmid y$.

$$
\begin{aligned}
& \Rightarrow b y^{2} \equiv-c z^{2} \quad \bmod p \\
& \Rightarrow b \equiv-\frac{c z^{2}}{y^{2}} \quad \bmod p \\
& \Rightarrow-b c \equiv(-c)\left(\frac{-c z^{2}}{y^{2}}\right) \equiv\left(\frac{c z}{y}\right)^{2} \bmod p
\end{aligned}
$$

So $-b c \equiv$$\bmod p \Rightarrow-b c \equiv 0 \bmod a$ by CRT. Others by symmetry.

Proof-Sufficiency. Let's assume (by negating all of a, b, c if necessary) that $a>$ $0, b, c<0$. Assume not in the case $a=1, b, c,=-1$ because $x^{2}-y^{2}-z^{2}=0$ obviously has nontrivial solutions (such as $(1,1,0)$). Since $-b c$ is a square mod a, say $-b c \equiv k^{2} \bmod a$. So look at polynomial congruence.

$$
\begin{aligned}
a x^{2}+b y^{2}+c z^{2} & \equiv b y^{2}+c z^{2} \quad \bmod a \\
& \equiv b\left(y^{2}+\frac{c}{b} z^{2}\right) \quad \bmod a \\
& \equiv b\left(y^{2}-\frac{k^{2}}{b^{2}} z^{2}\right) \quad \bmod a \\
& \equiv b\left(y+\frac{k}{b} z\right)\left(y-\frac{k}{b} z\right) \quad \bmod a
\end{aligned}
$$

Point is that factors into linear factors $\bmod a$, similarly with $\bmod b$ and $\bmod c$. Write

$$
\begin{aligned}
a x^{2}+b y^{2}+c z^{2} & \equiv\left(\alpha_{1} x+\beta_{1} y+\gamma_{1} z\right)\left(\rho_{1} x+\sigma_{1} y+\tau_{1} z\right) & \bmod a \\
& \equiv\left(\alpha_{2} x+\beta_{2} y+\gamma_{2} z\right)\left(\rho_{2} x+\sigma_{2} y+\tau_{2} z\right) & \bmod b \\
& \equiv\left(\alpha_{3} x+\beta_{3} y+\gamma_{3} z\right)\left(\rho_{3} x+\sigma_{3} y+\tau_{3} z\right) & \bmod c
\end{aligned}
$$

by CRT choose $\alpha \equiv \alpha_{1} \bmod a \equiv \alpha_{2} \bmod b \equiv \alpha_{3} \bmod c$, and similarly $\beta, \gamma, \rho, \sigma, \tau$ to get

$$
a x^{2}+b y^{2}+c z^{2} \equiv(\alpha x+\beta y+\gamma z)(\rho x+\sigma y+\tau z) \quad \bmod (a b c)
$$

Consider all the integer points in box $0 \leq x<\sqrt{|b c|}, 0 \leq y<\sqrt{|c a|}, 0 \leq z<$ $\sqrt{|a b|}$. (Note - not all square roots are integers.) The number of possible x is $\sqrt{|b c|}$ if $|b c|$ is integer, or $\lfloor\sqrt{|b c|}\rfloor+1>\sqrt{|b c|}$ if not.

So, the number of integer points in box is $>\sqrt{|b c|} \sqrt{|a b|} \sqrt{|a c|}=|a b c|=a b c$. But $a b c$ is the number of residue classes $\bmod (a b c)$, so there are 2 points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ in box such that

$$
\alpha x_{1}+\beta y_{1}+\gamma z_{1} \equiv \alpha x_{2}+\beta y_{2}+\gamma z_{2} \quad \bmod (a b c)
$$

With this, $x=x_{1}-x_{2}, y=y_{1}-y_{2}, z=z_{1}-z_{2}$ gives integer point not $(0,0,0)$ such that $\alpha x+\beta y+\gamma z \equiv 0 \bmod (a b c)$, and so

$$
a x^{2}+b y^{2}+c z^{2} \equiv(\underbrace{\alpha x+\beta y+\gamma z}_{\equiv 0})(\rho x+\sigma y+\tau z) \equiv 0 \quad \bmod (a b c)
$$

Also,

$$
\begin{aligned}
& |x|<\sqrt{|b c|} \\
& |y|<\sqrt{|c a|} \\
& |z|<\sqrt{|a b|}
\end{aligned}
$$

so

$$
\begin{aligned}
a x^{2}+b y^{2}+c z^{2} & \leq a x^{2} \\
& <a b c \\
a x^{2}+b y^{2}+c z^{2} & \geq b y^{2}+c z^{2} \\
& >-2 a b c
\end{aligned}
$$

and so

$$
-2 a b c<\underbrace{a x^{2}+b y^{2}+c z^{2}}_{\text {multiple of } a b c}<a b c
$$

so $a x^{2}+b y^{2}+c z^{2}$ is either 0 or $-a b c$. If $-a b c$, consider

$$
\begin{aligned}
& x^{\prime}=x z-b y \\
& y^{\prime}=y z+a x \\
& z^{\prime}=z^{2}+a b \\
& \Rightarrow a x^{\prime 2}+b y^{\prime 2}+c z^{\prime 2}=0
\end{aligned}
$$

If $x^{\prime}, y^{\prime}, z^{\prime}$ trivial, then $z^{\prime}=0 \Rightarrow z^{2}=-a b \Rightarrow a=1, b=-1$ (since a, b are coprime) \Rightarrow conic is $x^{2}-y^{2}+c z^{2}$, which has nontrivial $(1,1,0)$ solution.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

