
Lecture 22
Four Squares Theorem

Pell-Brahmagupta Equation (continued) - x2 − dy2 = 1,� = d ∈ N, if (x, y) and
(z, w) solutions then x < z ⇒ y < w if and only if x+

√
dy < z +

√
dw.

Theorem 78. If (x1, y1) is the least positive solution of x2−dy2 = 1 where� = d ∈ N,
then all positive solutions are given by (xn, yn) where xn +

√
dyn = (x1 +

√
dy1)n

for n = 1, 2, 3 . . .

Proof. First see that (xn, yn) is a solution. We know that (x1, y1) is a solution
x21 − dy21 = 1.

(x1 +
√
dy1)(x1

√
− dy1) = 1

xn +
√
dyn = (x n

1 +
√
dy1)

taking conjugates, xn
√

− dyn = (x1
√
− dy1)n

(xn +
√
dyn)(xn

√
− dyn) = (x n n

1 +
√
dy1) (x1

√
− dy1)

x2n
√

− dyn = ((x1 +
√
dy1)(x1

√
− dy1))n

= 1n = 1

So (xn, yn) is indeed a solution. Why are these all the positive solutions? Sup-
pose that (s, t) is a positive solution not of the form (xn, yn) for any n. Then
s+ t

√
d is a positive (> 1) real number. Not that {xn +

√
dyn} is a sequence of

positive real numbers which increase to infinity, since

xn +
√
dyn =

 nx1 +
√
dy


︸

>
︷︷
1

︸1
So pick n such that xn + yn

√
d < s + t

√
d < xn+1 + y√ n+1

√
d. Multiply the

sequence of inequalities by xn − yn d (it’s a positive real number because it
equals xn

√
− dyn = √1 ). We see

xn+ dyn

1 = (xn
√

− dyn)(xn +
√
dyn)

< (xn
√︸ − dy )(

a

︷︷n s+ t
√
d

+b
√
d, a,b∈Z

< (xn
√

− dyn)(xn+1 +

︸)
√
dyn+1)

= (x1
√

− dy1)n(x1 +
√
dy1)n+1

= (x1 +
√
dy1)
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and so
1 < a+ b

√
d < x1 +

√
dy1

We’ll see a, b ∈ N, then it will contradict minimality of (x1, y1)

1
a− b

√
d =

√
√ > 1 and a+ b d > 1, so 0 < a

a+ b d
− b
√
d < 1

Adding 1 + 0 < 2a gives a > 1 > 02 which means that a ≥ 1. Also, b > a√−1
√ d

≥
0⇒ (a, b) is a positive integer solution. Why is a+ b d a solution?

(a+ b
√
d)(a b

√
d) = (xn

√ √
− − dyn)(s+ t d)(xn +

√
dyn)(s− t

√
d)

a2 − b2d = (x2n − dy2n)(s2 − dt2) = 1

�

P-B equation is quite useful in many diophantine equations.

Eg. Putnam asked, can we find infinitely many triples of consecutive integers,
each of which is a sum of 2 squares?

Yes. Suppose we choose n−1, n, n+1 where we set n = x2 n = x2+02, n+1 =
x2 + 12, x2 − 1 = n− 1 = sum of 2 squares y2 + y2

⇒
, so we need to find infinitely

many (x, y) such that x2 − 2y2 = 1. P-B, so ok.

Proposition 79. Let N ∈ Z, d ∈ N, d = �. If x2 − dy2 = N has one solution, it has
infinitely many.

Proof. Let (x1, y1) be a solution, so (x1 +
√
dy1)(x1

√
− dy1) = N . Let (sn, tn) be

infinitely many solutions to x2 − dy2 = 1⇒ (sn +
√
dtn)(sn

√
− dtn) = 1. Then

if we let xn +
√
dyn = (x1 +

√
dy1)(sn +

√
dtn) it’s easy to see x2n− dy2n = N and

that these are all distinct. So we get infinitely many solutions. �

Eg. Prove that n2 + (n+ 1)2 is a perfect square for infinitely many values of n.

Proof.

n2 + n2 + 2n+ 1 = 2n2 + 2n+ 1 = m2

4n2 + 4n+ 2 = 2m2

(2n+ 1)2 + 1 = 2m2

Let l be 2n+ 1⇒ get a solution of l2 + 1 = 2m2. Conversely, if l2 + 1 = 2m2 then
l is odd, so n = l+1

2 is an integer, and m2 = n2 + (n + 1)2. (Just want to show
that l2 − 2m2 = −1 has infinitely many solutions. We know it has an obvious
solution (l,m) = (1, 1)⇒ it has infinitely many.) �
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Theorem 80 (Four Squares Theorem). Every non-negative integer is a sum of 4
integer squares.

Proof. Just like how we use complex numbers in the proof of the two squares
theorem to establish that (a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2, we’ll use
quaternions now

Q = {a+ bi+ cj + dk : a, b, c, d,∈ R}

i, j, k are ”imaginary” where

i2 = j2 = k2 = ijk = −1

ij = k ji = −k
jk = i kj = −i
ki = j ik = −j

Multiplication in Q is non-commutative (but associative - x1(x2x3) = (x1x2)x3,
etc). Addition is component-wise. If z = a + bj + cj + dk, define conjugate
z = a− bi− cj − dk. Norm is ‖z‖ = zz = a2 + b2 + c2 + d2.

Note that zw = w · z. It suffices to check things like

−k = k = ij = j · i = (−j)(−i)

so
‖zw‖ = zwzw = zwwz = z(ww)z = (zz)(ww) = ‖z‖‖w‖

So (a2 + b2 + c2 + d2)(e2 + f2 + g2 +h2) = (ae− bf − cg− dh)2 + 3 other similar
terms⇒ product of sum of 4 squares is a sum of 4 squares. So enough to show
n is a sum of 4 squares for the case that n = 0, 1, or prime. 0 = 02 + 02 + 02 + 02,
1 = 12 + 02 + 02 + 02, 2 = 12 + 12 + 02 + 02, so enough to show that any odd
prime p is a sum of 4 squares.

Lemma 81. There’s a positive integer m < p such that mp is a sum of 4 squares.

Proof. Recall that if p is an odd prime then x2 +y2 + 1 = 0 mod p has a solution
(by pigeonhole principle). Let’s suppose that we’ve produced x, y mod p so
|x|, |y| < p

2 . So
2

x2 + y2 1 < 2
(p)2 p

+ + 1 = + 1 < p2
2 2

So x2 + y2 + 12 + 02 = mp for some 0 < m < p. �

Let m be the smallest positive integer such that mp is a sum of 4 squares. We’ve
showed m < p. If m = 1 done. So assume m > 1 and we’ll get a contradiction
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by producing a smaller value of m. If m is even, mp = x2 + y2 + z2 + w2 is
even, so the number of odd elements of {x, y, z, w} is even. We can pair these
up, say, as {x, y} and {z, w} such that x and y have same parity and z, w have
same parity, so

x+ y x w
,
− y z + z w

, ,
−

2 2 2 2
∈ Z(

x+ y
)2 (

x− 2
y
) ( )2

z + w
)2 (

z − w x2 + y2 + z2 + w2

+ + + =
2 2 2 2

=
(m

2

) 2

p (decreasing m)

So suppose l is some prime dividing m, necessarily odd. Write m = gl, so x2 +
y2 + z2 +w2 = glp ≡ 0 mod l. Note l < p because l|m,m < p. Reduce x, y, z, w
to x′, y′, z′, w′ mod l (ie., x ≡ x′ mod l, etc.) such that |x′|, |y′|, |z′|, |w′| < l

2 . If
x′, y′, z′, w′ are all 0, then x, y, z, w are also 0 mod l, and(x)2 (y)2 (z)2 (w)2 glp gp

+ + + = =
l l l l l2 l

and g < gl = m reducing m. So we may assume x′, yl
′, z′, w′ are not all 0.

x+ yi+ zj + wk = x′ + y′i+ z′j + w′k mod l

Let

ρ = x+ yi+ zj + wk

σ = x′ + y′i+ z′i+ w′k

Then

‖σ‖ = ‖σ‖
= x′2 + y′2 + 2 2

≡ x

︸
positive

2 + y2 +

︷︷z′ + w′

z2 + w2

︸
mod l

≡ 0 mod l

So it’s a multiple of l, say hl. Since |x|, |y|, |z|, |w| < l
2 ,

2

x2 + y2 + z2
l

+ w2 < 4

(
2

)
= l2

So 0 < h < l.

Also ρσ = ρρ mod l ≡ x2 + y2 + z2 + w2 = 0 mod l, so the components of
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quaternion ρσ are all divisible by l. Let β = ρσ
l .

‖β‖ =

∥∥∥ρσ∥∥
=

∥ ∥∥∥∥ l∥1∥ l
∥∥∥∥ ‖ρ‖‖σ‖

1
= (x2 + y2︸ +︷︷z2 + w2︸)(︸x′2 + y′2 + z′2 + w′2)
l2

glp

(
=

︷︷
hl

glp)(hl)

l2

︸

= (gh)p

Note that m = gl and gh < gl since h < l, so we have a sum of 4 squares which
is a smaller multiple of p. �
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