Lecture 22

Four Squares Theorem

Pell-Brahmagupta Equation (continued) - $x^{2}-d y^{2}=1, \square \neq d \in \mathbb{N}$, if (x, y) and (z, w) solutions then $x<z \Rightarrow y<w$ if and only if $x+\sqrt{d} y<z+\sqrt{d} w$.

Theorem 78. If $\left(x_{1}, y_{1}\right)$ is the least positive solution of $x^{2}-d y^{2}=1$ where $\square \neq d \in \mathbb{N}$, then all positive solutions are given by $\left(x_{n}, y_{n}\right)$ where $x_{n}+\sqrt{d} y_{n}=\left(x_{1}+\sqrt{d} y_{1}\right)^{n}$ for $n=1,2,3 \ldots$.

Proof. First see that $\left(x_{n}, y_{n}\right)$ is a solution. We know that $\left(x_{1}, y_{1}\right)$ is a solution $x_{1}^{2}-d y_{1}^{2}=1$.

$$
\begin{aligned}
\left(x_{1}+\sqrt{d} y_{1}\right)\left(x_{1}-\sqrt{d} y_{1}\right) & =1 \\
x_{n}+\sqrt{d} y_{n} & =\left(x_{1}+\sqrt{d} y_{1}\right)^{n} \\
\text { taking conjugates, } x_{n}-\sqrt{d} y_{n} & =\left(x_{1}-\sqrt{d} y_{1}\right)^{n} \\
\left(x_{n}+\sqrt{d} y_{n}\right)\left(x_{n}-\sqrt{d} y_{n}\right) & =\left(x_{1}+\sqrt{d} y_{1}\right)^{n}\left(x_{1}-\sqrt{d} y_{1}\right)^{n} \\
x_{n}^{2}-\sqrt{d} y_{n} & =\left(\left(x_{1}+\sqrt{d} y_{1}\right)\left(x_{1}-\sqrt{d} y_{1}\right)\right)^{n} \\
& =1^{n}=1
\end{aligned}
$$

So $\left(x_{n}, y_{n}\right)$ is indeed a solution. Why are these all the positive solutions? Suppose that (s, t) is a positive solution not of the form $\left(x_{n}, y_{n}\right)$ for any n. Then $s+t \sqrt{d}$ is a positive (>1) real number. Not that $\left\{x_{n}+\sqrt{d} y_{n}\right\}$ is a sequence of positive real numbers which increase to infinity, since

$$
x_{n}+\sqrt{d} y_{n}=(\underbrace{x_{1}+\sqrt{d} y_{1}}_{>1})^{n}
$$

So pick n such that $x_{n}+y_{n} \sqrt{d}<s+t \sqrt{d}<x_{n+1}+y_{n+1} \sqrt{d}$. Multiply the sequence of inequalities by $x_{n}-y_{n} \sqrt{d}$ (it's a positive real number because it equals $\left.x_{n}-\sqrt{d} y_{n}=\frac{1}{x_{n}+\sqrt{d} y_{n}}\right)$. We see

$$
\begin{aligned}
1 & =\left(x_{n}-\sqrt{d} y_{n}\right)\left(x_{n}+\sqrt{d} y_{n}\right) \\
& <\underbrace{\left(x_{n}-\sqrt{d} y_{n}\right)(s+t \sqrt{d})}_{a+b \sqrt{d}, a, b \in \mathbb{Z}} \\
& <\left(x_{n}-\sqrt{d} y_{n}\right)\left(x_{n+1}+\sqrt{d} y_{n+1}\right) \\
& =\left(x_{1}-\sqrt{d} y_{1}\right)^{n}\left(x_{1}+\sqrt{d} y_{1}\right)^{n+1} \\
& =\left(x_{1}+\sqrt{d} y_{1}\right)
\end{aligned}
$$

and so

$$
1<a+b \sqrt{d}<x_{1}+\sqrt{d} y_{1}
$$

We'll see $a, b \in \mathbb{N}$, then it will contradict minimality of $\left(x_{1}, y_{1}\right)$

$$
a-b \sqrt{d}=\frac{1}{a+b \sqrt{d}}>1 \text { and } a+b \sqrt{d}>1, \text { so } 0<a-b \sqrt{d}<1
$$

Adding $1+0<2 a$ gives $a>\frac{1}{2}>0$ which means that $a \geq 1$. Also, $b>\frac{a-1}{\sqrt{d}} \geq$ $0 \Rightarrow(a, b)$ is a positive integer solution. Why is $a+b \sqrt{d}$ a solution?

$$
\begin{aligned}
(a+b \sqrt{d})(a-b \sqrt{d}) & =\left(x_{n}-\sqrt{d} y_{n}\right)(s+t \sqrt{d})\left(x_{n}+\sqrt{d} y_{n}\right)(s-t \sqrt{d}) \\
a^{2}-b^{2} d & =\left(x_{n}^{2}-d y_{n}^{2}\right)\left(s^{2}-d t^{2}\right)=1
\end{aligned}
$$

P-B equation is quite useful in many diophantine equations.

Eg. Putnam asked, can we find infinitely many triples of consecutive integers, each of which is a sum of 2 squares?

Yes. Suppose we choose $n-1, n, n+1$ where we set $n=x^{2} \Rightarrow n=x^{2}+0^{2}, n+1=$ $x^{2}+1^{2}, x^{2}-1=n-1=$ sum of 2 squares $y^{2}+y^{2}$, so we need to find infinitely many (x, y) such that $x^{2}-2 y^{2}=1$. P-B, so ok.

Proposition 79. Let $N \in \mathbb{Z}, d \in \mathbb{N}, d \neq \square$. If $x^{2}-d y^{2}=N$ has one solution, it has infinitely many.

Proof. Let $\left(x_{1}, y_{1}\right)$ be a solution, so $\left(x_{1}+\sqrt{d} y_{1}\right)\left(x_{1}-\sqrt{d} y_{1}\right)=N$. Let $\left(s_{n}, t_{n}\right)$ be infinitely many solutions to $x_{2}-d y^{2}=1 \Rightarrow\left(s_{n}+\sqrt{d} t_{n}\right)\left(s_{n}-\sqrt{d} t_{n}\right)=1$. Then if we let $x_{n}+\sqrt{d} y_{n}=\left(x_{1}+\sqrt{d} y_{1}\right)\left(s_{n}+\sqrt{d} t_{n}\right)$ it's easy to see $x_{n}^{2}-d y_{n}^{2}=N$ and that these are all distinct. So we get infinitely many solutions.

Eg. Prove that $n^{2}+(n+1)^{2}$ is a perfect square for infinitely many values of n.

Proof.

$$
\begin{aligned}
n^{2}+n^{2}+2 n+1= & 2 n^{2}+2 n+1= \\
& 4 n^{2}+4 n+2=2 m^{2} \\
& (2 n+1)^{2}+1=2 m^{2}
\end{aligned}
$$

Let l be $2 n+1 \Rightarrow$ get a solution of $l^{2}+1=2 m^{2}$. Conversely, if $l^{2}+1=2 m^{2}$ then l is odd, so $n=\frac{l+1}{2}$ is an integer, and $m^{2}=n^{2}+(n+1)^{2}$. (Just want to show that $l^{2}-2 m^{2}=-1$ has infinitely many solutions. We know it has an obvious solution $(l, m)=(1,1) \Rightarrow$ it has infinitely many.)

Theorem 80 (Four Squares Theorem). Every non-negative integer is a sum of 4 integer squares.

Proof. Just like how we use complex numbers in the proof of the two squares theorem to establish that $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2}$, we'll use quaternions now

$$
Q=\{a+b i+c j+d k: a, b, c, d, \in \mathbb{R}\}
$$

i, j, k are "imaginary" where

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

$$
\begin{array}{rlrl}
i j & =k & j i & =-k \\
j k & =i & k j & =-i \\
k i & =j & i k & =-j
\end{array}
$$

Multiplication in Q is non-commutative (but associative - $x_{1}\left(x_{2} x_{3}\right)=\left(x_{1} x_{2}\right) x_{3}$, etc). Addition is component-wise. If $z=a+b j+c j+d k$, define conjugate $\bar{z}=a-b i-c j-d k$. Norm is $\|z\|=z \bar{z}=a^{2}+b^{2}+c^{2}+d^{2}$.

Note that $\overline{z w}=\bar{w} \cdot \bar{z}$. It suffices to check things like

$$
-k=\bar{k}=\overline{i j}=\bar{j} \cdot \bar{i}=(-j)(-i)
$$

so

$$
\|z w\|=z w \overline{z w}=z w \overline{w z}=z(w \bar{w}) \bar{z}=(z \bar{z})(w \bar{w})=\|z\|\|w\|
$$

So $\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(e^{2}+f^{2}+g^{2}+h^{2}\right)=(a e-b f-c g-d h)^{2}+3$ other similar terms \Rightarrow product of sum of 4 squares is a sum of 4 squares. So enough to show n is a sum of 4 squares for the case that $n=0,1$, or prime. $0=0^{2}+0^{2}+0^{2}+0^{2}$, $1=1^{2}+0^{2}+0^{2}+0^{2}, 2=1^{2}+1^{2}+0^{2}+0^{2}$, so enough to show that any odd prime p is a sum of 4 squares.

Lemma 81. There's a positive integer $m<p$ such that $m p$ is a sum of 4 squares.

Proof. Recall that if p is an odd prime then $x^{2}+y^{2}+1=0 \bmod p$ has a solution (by pigeonhole principle). Let's suppose that we've produced $x, y \bmod p$ so $|x|,|y|<\frac{p}{2}$. So

$$
x^{2}+y^{2}+1<2\left(\frac{p}{2}\right)^{2}+1=\frac{p^{2}}{2}+1<p^{2}
$$

So $x^{2}+y^{2}+1^{2}+0^{2}=m p$ for some $0<m<p$.

Let m be the smallest positive integer such that $m p$ is a sum of 4 squares. We've showed $m<p$. If $m=1$ done. So assume $m>1$ and we'll get a contradiction
by producing a smaller value of m. If m is even, $m p=x^{2}+y^{2}+z^{2}+w^{2}$ is even, so the number of odd elements of $\{x, y, z, w\}$ is even. We can pair these up, say, as $\{x, y\}$ and $\{z, w\}$ such that x and y have same parity and z, w have same parity, so

$$
\begin{aligned}
\frac{x+y}{2}, \frac{x-y}{2}, \frac{z+w}{2}, \frac{z-w}{2} & \in \mathbb{Z} \\
\left(\frac{x+y}{2}\right)^{2}+\left(\frac{x-y}{2}\right)^{2}+\left(\frac{z+w}{2}\right)^{2}+\left(\frac{z-w}{2}\right)^{2} & =\frac{x^{2}+y^{2}+z^{2}+w^{2}}{2} \\
& =\left(\frac{m}{2}\right) p(\text { decreasing } \mathrm{m})
\end{aligned}
$$

So suppose l is some prime dividing m, necessarily odd. Write $m=g l$, so $x^{2}+$ $y^{2}+z^{2}+w^{2}=g l p \equiv 0 \bmod l$. Note $l<p$ because $l \mid m, m<p$. Reduce x, y, z, w to $x^{\prime}, y^{\prime}, z^{\prime}$, $w^{\prime} \bmod l$ (ie., $x \equiv x^{\prime} \bmod l$, etc.) such that $\left|x^{\prime}\right|,\left|y^{\prime}\right|,\left|z^{\prime}\right|,\left|w^{\prime}\right|<\frac{l}{2}$. If $x^{\prime}, y^{\prime}, z^{\prime}, w^{\prime}$ are all 0 , then x, y, z, w are also $0 \bmod l$, and

$$
\left(\frac{x}{l}\right)^{2}+\left(\frac{y}{l}\right)^{2}+\left(\frac{z}{l}\right)^{2}+\left(\frac{w}{l}\right)^{2}=\frac{g l p}{l^{2}}=\frac{g p}{l}
$$

and $\frac{g}{l}<g l=m$ reducing m. So we may assume $x^{\prime}, y^{\prime}, z^{\prime}, w^{\prime}$ are not all 0 .

$$
x+y i+z j+w k=x^{\prime}+y^{\prime} i+z^{\prime} j+w^{\prime} k \quad \bmod l
$$

Let

$$
\begin{aligned}
& \rho=x+y i+z j+w k \\
& \sigma=x^{\prime}+y^{\prime} i+z^{\prime} i+w^{\prime} k
\end{aligned}
$$

Then

$$
\begin{aligned}
\|\sigma\| & =\|\bar{\sigma}\| \\
& =\underbrace{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}+w^{\prime 2}}_{\text {positive }} \\
& \equiv x^{2}+y^{2}+z^{2}+w^{2} \quad \bmod l \\
& \equiv 0 \bmod l
\end{aligned}
$$

So it's a multiple of l, say $h l$. Since $|x|,|y|,|z|,|w|<\frac{l}{2}$,

$$
x^{2}+y^{2}+z^{2}+w^{2}<4\left(\frac{l}{2}\right)^{2}=l^{2}
$$

So $0<h<l$.
Also $\rho \bar{\sigma}=\rho \bar{\rho} \bmod l \equiv x^{2}+y^{2}+z^{2}+w^{2}=0 \bmod l$, so the components of
quaternion $\rho \bar{\sigma}$ are all divisible by l. Let $\beta=\frac{\rho \bar{\sigma}}{l}$.

$$
\begin{aligned}
\|\beta\| & =\left\|\frac{\rho \bar{\sigma}}{l}\right\| \\
& =\left\|\frac{1}{l}\right\|\|\rho\|\|\bar{\sigma}\| \\
& =\frac{1}{l^{2}}(\underbrace{x^{2}+y^{2}+z^{2}+w^{2}}_{g l p})(\underbrace{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}+w^{\prime 2}}_{h l}) \\
& =\frac{(g l p)(h l)}{l^{2}} \\
& =(g h) p
\end{aligned}
$$

Note that $m=g l$ and $g h<g l$ since $h<l$, so we have a sum of 4 squares which is a smaller multiple of p.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

