Lecture 22 Four Squares Theorem

Pell-Brahmagupta Equation (continued) - $x^2 - dy^2 = 1$, $\Box \neq d \in \mathbb{N}$, if (x, y) and (z, w) solutions then $x < z \Rightarrow y < w$ if and only if $x + \sqrt{dy} < z + \sqrt{dw}$.

Theorem 78. If (x_1, y_1) is the least positive solution of $x^2 - dy^2 = 1$ where $\Box \neq d \in \mathbb{N}$, then all positive solutions are given by (x_n, y_n) where $x_n + \sqrt{dy_n} = (x_1 + \sqrt{dy_1})^n$ for n = 1, 2, 3...

Proof. First see that (x_n, y_n) is a solution. We know that (x_1, y_1) is a solution $x_1^2 - dy_1^2 = 1$.

$$(x_{1} + \sqrt{d}y_{1})(x_{1} - \sqrt{d}y_{1}) = 1$$

$$x_{n} + \sqrt{d}y_{n} = (x_{1} + \sqrt{d}y_{1})^{n}$$
taking conjugates, $x_{n} - \sqrt{d}y_{n} = (x_{1} - \sqrt{d}y_{1})^{n}$

$$(x_{n} + \sqrt{d}y_{n})(x_{n} - \sqrt{d}y_{n}) = (x_{1} + \sqrt{d}y_{1})^{n}(x_{1} - \sqrt{d}y_{1})^{n}$$

$$x_{n}^{2} - \sqrt{d}y_{n} = ((x_{1} + \sqrt{d}y_{1})(x_{1} - \sqrt{d}y_{1}))^{n}$$

$$= 1^{n} = 1$$

So (x_n, y_n) is indeed a solution. Why are these all the positive solutions? Suppose that (s,t) is a positive solution not of the form (x_n, y_n) for any n. Then $s + t\sqrt{d}$ is a positive (> 1) real number. Not that $\{x_n + \sqrt{d}y_n\}$ is a sequence of positive real numbers which increase to infinity, since

$$x_n + \sqrt{dy_n} = \left(\underbrace{x_1 + \sqrt{dy_1}}_{>1}\right)^n$$

So pick *n* such that $x_n + y_n\sqrt{d} < s + t\sqrt{d} < x_{n+1} + y_{n+1}\sqrt{d}$. Multiply the sequence of inequalities by $x_n - y_n\sqrt{d}$ (it's a positive real number because it equals $x_n - \sqrt{d}y_n = \frac{1}{x_n + \sqrt{d}y_n}$). We see

$$1 = (x_n - \sqrt{dy_n})(x_n + \sqrt{dy_n})$$

$$< \underbrace{(x_n - \sqrt{dy_n})(s + t\sqrt{d})}_{a+b\sqrt{d}, a, b \in \mathbb{Z}}$$

$$< (x_n - \sqrt{dy_n})(x_{n+1} + \sqrt{dy_{n+1}})$$

$$= (x_1 - \sqrt{dy_1})^n (x_1 + \sqrt{dy_1})^{n+1}$$

$$= (x_1 + \sqrt{dy_1})$$

)

and so

$$1 < a + b\sqrt{d} < x_1 + \sqrt{d}y_1$$

We'll see $a, b \in \mathbb{N}$, then it will contradict minimality of (x_1, y_1)

$$a - b\sqrt{d} = \frac{1}{a + b\sqrt{d}} > 1$$
 and $a + b\sqrt{d} > 1$, so $0 < a - b\sqrt{d} < 1$

Adding 1 + 0 < 2a gives $a > \frac{1}{2} > 0$ which means that $a \ge 1$. Also, $b > \frac{a-1}{\sqrt{d}} \ge 0 \Rightarrow (a, b)$ is a positive integer solution. Why is $a + b\sqrt{d}$ a solution?

$$(a+b\sqrt{d})(a-b\sqrt{d}) = (x_n - \sqrt{d}y_n)(s+t\sqrt{d})(x_n + \sqrt{d}y_n)(s-t\sqrt{d})$$
$$a^2 - b^2d = (x_n^2 - dy_n^2)(s^2 - dt^2) = 1$$

P-B equation is quite useful in many diophantine equations.

Eg. Putnam asked, can we find infinitely many triples of consecutive integers, each of which is a sum of 2 squares?

Yes. Suppose we choose n-1, n, n+1 where we set $n = x^2 \Rightarrow n = x^2+0^2$, $n+1 = x^2 + 1^2$, $x^2 - 1 = n - 1 = \text{sum of } 2$ squares $y^2 + y^2$, so we need to find infinitely many (x, y) such that $x^2 - 2y^2 = 1$. P-B, so ok.

Proposition 79. Let $N \in \mathbb{Z}, d \in \mathbb{N}, d \neq \square$. If $x^2 - dy^2 = N$ has one solution, it has infinitely many.

Proof. Let (x_1, y_1) be a solution, so $(x_1 + \sqrt{dy_1})(x_1 - \sqrt{dy_1}) = N$. Let (s_n, t_n) be infinitely many solutions to $x_2 - dy^2 = 1 \Rightarrow (s_n + \sqrt{dt_n})(s_n - \sqrt{dt_n}) = 1$. Then if we let $x_n + \sqrt{dy_n} = (x_1 + \sqrt{dy_1})(s_n + \sqrt{dt_n})$ it's easy to see $x_n^2 - dy_n^2 = N$ and that these are all distinct. So we get infinitely many solutions.

Eg. Prove that $n^2 + (n+1)^2$ is a perfect square for infinitely many values of *n*.

Proof.

$$n^{2} + n^{2} + 2n + 1 = 2n^{2} + 2n + 1 = m^{2}$$
$$4n^{2} + 4n + 2 = 2m^{2}$$
$$(2n + 1)^{2} + 1 = 2m^{2}$$

Let l be $2n + 1 \Rightarrow$ get a solution of $l^2 + 1 = 2m^2$. Conversely, if $l^2 + 1 = 2m^2$ then l is odd, so $n = \frac{l+1}{2}$ is an integer, and $m^2 = n^2 + (n+1)^2$. (Just want to show that $l^2 - 2m^2 = -1$ has infinitely many solutions. We know it has an obvious solution $(l, m) = (1, 1) \Rightarrow$ it has infinitely many.)

Theorem 80 (Four Squares Theorem). *Every non-negative integer is a sum of* 4 *integer squares.*

Proof. Just like how we use complex numbers in the proof of the two squares theorem to establish that $(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$, we'll use **quaternions** now

$$Q = \{a + bi + cj + dk : a, b, c, d, \in \mathbb{R}\}$$

i, *j*, *k* are "imaginary" where

$$i^2 = j^2 = k^2 = ijk = -1$$

ij = k	ji = -k
jk = i	kj = -i
ki = j	ik = -j

Multiplication in Q is non-commutative (but associative - $x_1(x_2x_3) = (x_1x_2)x_3$, etc). Addition is component-wise. If z = a + bj + cj + dk, define conjugate $\overline{z} = a - bi - cj - dk$. Norm is $||z|| = z\overline{z} = a^2 + b^2 + c^2 + d^2$.

Note that $\overline{zw} = \overline{w} \cdot \overline{z}$. It suffices to check things like

$$-k = \overline{k} = \overline{ij} = \overline{j} \cdot \overline{i} = (-j)(-i)$$

so

$$||zw|| = zw\overline{zw} = zw\overline{wz} = z(w\overline{w})\overline{z} = (z\overline{z})(w\overline{w}) = ||z|| ||w||$$

So $(a^2 + b^2 + c^2 + d^2)(e^2 + f^2 + g^2 + h^2) = (ae - bf - cg - dh)^2 + 3$ other similar terms \Rightarrow product of sum of 4 squares is a sum of 4 squares. So enough to show n is a sum of 4 squares for the case that n = 0, 1, or prime. $0 = 0^2 + 0^2 + 0^2 + 0^2$, $1 = 1^2 + 0^2 + 0^2 + 0^2$, $2 = 1^2 + 1^2 + 0^2 + 0^2$, so enough to show that any odd prime p is a sum of 4 squares.

Lemma 81. There's a positive integer m < p such that mp is a sum of 4 squares.

Proof. Recall that if p is an odd prime then $x^2 + y^2 + 1 = 0 \mod p$ has a solution (by pigeonhole principle). Let's suppose that we've produced $x, y \mod p$ so $|x|, |y| < \frac{p}{2}$. So

$$x^2 + y^2 + 1 < 2\left(\frac{p}{2}\right)^2 + 1 = \frac{p^2}{2} + 1 < p^2$$

So $x^2 + y^2 + 1^2 + 0^2 = mp$ for some $0 < m < p$.

Let *m* be the smallest positive integer such that mp is a sum of 4 squares. We've showed m < p. If m = 1 done. So assume m > 1 and we'll get a contradiction

by producing a smaller value of *m*. If *m* is even, $mp = x^2 + y^2 + z^2 + w^2$ is even, so the number of odd elements of $\{x, y, z, w\}$ is even. We can pair these up, say, as $\{x, y\}$ and $\{z, w\}$ such that *x* and *y* have same parity and *z*, *w* have same parity, so

$$\frac{x+y}{2}, \frac{x-y}{2}, \frac{z+w}{2}, \frac{z-w}{2} \in \mathbb{Z}$$
$$\left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2}\right)^2 + \left(\frac{z+w}{2}\right)^2 + \left(\frac{z-w}{2}\right)^2 = \frac{x^2+y^2+z^2+w^2}{2}$$
$$= \left(\frac{m}{2}\right)p \text{ (decreasing m)}$$

So suppose l is some prime dividing m, necessarily odd. Write m = gl, so $x^2 + y^2 + z^2 + w^2 = glp \equiv 0 \mod l$. Note l < p because l|m, m < p. Reduce x, y, z, w to $x', y', z', w' \mod l$ (ie., $x \equiv x' \mod l$, etc.) such that $|x'|, |y'|, |z'|, |w'| < \frac{l}{2}$. If x', y', z', w' are all 0, then x, y, z, w are also 0 mod l, and

$$\left(\frac{x}{l}\right)^2 + \left(\frac{y}{l}\right)^2 + \left(\frac{z}{l}\right)^2 + \left(\frac{w}{l}\right)^2 = \frac{glp}{l^2} = \frac{gp}{l}$$

and $\frac{g}{l} < gl = m$ reducing *m*. So we may assume x', y', z', w' are not all 0.

$$x + yi + zj + wk = x' + y'i + z'j + w'k \mod l$$

Let

$$\begin{split} \rho &= x + yi + zj + wk \\ \sigma &= x' + y'i + z'i + w'k \end{split}$$

Then

$$\|\sigma\| = \|\overline{\sigma}\|$$

= $\underbrace{x'^2 + y'^2 + z'^2 + w'^2}_{\text{positive}}$
= $x^2 + y^2 + z^2 + w^2 \mod l$
= 0 mod l

So it's a multiple of *l*, say *hl*. Since $|x|, |y|, |z|, |w| < \frac{l}{2}$,

$$x^{2} + y^{2} + z^{2} + w^{2} < 4\left(\frac{l}{2}\right)^{2} = l^{2}$$

So 0 < h < l.

Also $\rho \overline{\sigma} = \rho \overline{\rho} \mod l \equiv x^2 + y^2 + z^2 + w^2 = 0 \mod l$, so the components of

quaternion $\rho \overline{\sigma}$ are all divisible by l. Let $\beta = \frac{\rho \overline{\sigma}}{l}$.

$$\begin{split} \|\beta\| &= \left\| \frac{\rho \overline{\sigma}}{l} \right\| \\ &= \left\| \frac{1}{l} \right\| \|\rho\| \|\overline{\sigma}\| \\ &= \frac{1}{l^2} (\underbrace{x^2 + y^2 + z^2 + w^2}_{glp}) (\underbrace{x'^2 + y'^2 + z'^2 + w'^2}_{hl}) \\ &= \frac{(glp)(hl)}{l^2} \\ &= (gh)p \end{split}$$

Note that m = gl and gh < gl since h < l, so we have a sum of 4 squares which is a smaller multiple of p.

18.781 Theory of Numbers Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.