Lecture 2

(XFQGHDQ\$ ORUMKP \mathbb{C} UP HN

Euclidean gcd Algorithm - Given $a, b \in \mathbb{Z}$, not both 0 , find (a, b)

- Step 1: If $a, b<0$, replace with negative
- Step 2: If $a>b$, switch a and b
- Step 3: If $a=0$, return b
- Step 4: Since $a>0$, write $b=a q+r$ with $0 \leq r<a$. Replace (a, b) with (r, a) and go to Step 3.

Proof of correctness. Steps 1 and 2 don't affect gcd, and Step 3 is obvious. Need to show for Step 4 that $(a, b)=(r, a)$ where $b=a q+r$. Let $d=(r, a)$ and $e=(a, b)$.

$$
\begin{aligned}
d=(r, a) & \Rightarrow d|a, d| r \\
& \Rightarrow d \mid a q+r=b \\
& \Rightarrow d \mid a, b \\
& \Rightarrow d \mid(a, b)=e \\
e=(a, b) & \Rightarrow e|a, e| b \\
& \Rightarrow e \mid b-a q=r \\
& \Rightarrow e \mid r, a \\
& \Rightarrow e \mid(r, a)=d
\end{aligned}
$$

Since d and e are positive and divide each other, are equal.
Proof of termination. After each application of Step 4, the smaller of the pair (a) strictly decreases since $r<a$. Since there are only finitely many non-negative integers less than initial a, there can only be finitely many steps. (Note: because it decreases by at least 1 at each step, this proof only shows a bound of $O(a)$ steps, when in fact the algorithm always finishes in time $O(\log (a))$ (left as exercise))

To get the linear combination at the same time:

		43	27
	43	1	0
1	27	0	1
1	16	1	-1
1	11	-1	2
2	5	2	-3
5	1	-5	8
	0	$\Rightarrow 1=-5(43)+8(27)$	

(Definition) Prime number: A prime number is an integer $p>1$ such that it cannot be written as $p=a b$ with $a, b>1$.

Theorem 5 (Fundamental Theorem of Arithmetic). Every positive integer can be written as a product of primes (possibly with repetition) and any such expression is unique up to a permutation of the prime factors. (1 is the empty product, similar to 0 being the empty sum.)

Proof. There are two parts, existence and uniqueness.

Proof of Existence (by contradiction). Let set S be the set of numbers which cannot be written as a product of primes. Assume S not empty, so it has a smallest element n by WOP.
$n=1$ not possible by definition, so $n>1$. n cannot be prime, since if it were prime it'd be a product with one term, and so wouldn't be in S. So, $n=a b$ with $a, b>1$.

Also, $a, b<n$ so they cannot be in S by minimality of n, and so a and b are the product of primes. n is the product of the two, and so is also a product of primes, and so cannot be in $S(\xi)$, and so S is empty.

Proof of Uniqueness.

Lemma 6. If p is prime and $p \mid a b$, then $p \mid a$ or $p \mid b$.
Proof. Assume $p \nmid a$, and let $g=(p, a)$. Since p is prime, $g=1$ or p, but can't be p because $g \mid a$ and $p \nmid a$, so $g=1$. Corollary from last class (4) shows that $p \mid b$.

Corollary 7. If $p \mid a_{1} a_{2} \ldots a_{n}$, then $p \mid a_{i}$ for some i.
Proof. Obvious if $n=1$, and true by lemma for $n=2$. By induction, suppose that it holds for $n=k$. Check for $n=k+1$:

$$
\begin{aligned}
& p \mid \underbrace{a_{1} a_{2} \ldots a_{k}}_{A} \underbrace{a_{k+1}}_{B} \\
& p \left\lvert\, A B \Rightarrow \begin{cases}p \mid A & =p \mid a_{1} a_{2} \ldots a_{k} \\
& \Rightarrow p \mid a_{i} \text { for some } i \text { by the induction hypothesis } \\
p \mid B & \Rightarrow p \mid a_{k+1}\end{cases} \right.
\end{aligned}
$$

And so we see that the hypothesis holds for $n=k+1$ as well.

To prove uniqueness, say that we have $n=p_{1} p_{2} \ldots p_{r}=q_{1} q_{2} \ldots q_{s}$, which is the smallest element in a set of counterexamples. We want to show that $r=s$ and $p_{1} p_{2} \ldots p_{r}$ is a permutation of $q_{1} q_{2} \ldots q_{s}$.
$p_{1} \mid n=q_{1} q_{2} \ldots q_{s}$, so $p_{1} \mid q_{i}$ for some i. Since p_{1} and q_{i} are prime, $p_{1}=q_{i}$. Cancel to get $p_{2} \ldots p_{r}=q_{1} \ldots q_{i-1} q_{i+1} \ldots q_{s}$. This number is less than n, and so not in the set of counterexamples by minimality of n, and so $r-1=s-1$ and $p_{2} \ldots p_{r}$ is a permutation of $q_{1} \ldots q_{i-1} q_{i+1} \ldots q_{s}$, and so $r=s$ and $p_{1} p_{2} \ldots p_{r}$ is a permutation of $q_{1} q_{2} \ldots q_{s}$. (々)

Theorem 8 (Euclid). There are infinitely many primes

Proof by contradiction. Suppose there are finitely many primes $p_{1}, p_{2} \ldots p_{n}$, with $n \geq 1$. Consider $N=\left(p_{1} p_{2} \ldots p_{n}\right)+1 . N>1$, and so by the Fundamental Theorem of Arithmetic there must be a prime p_{i} dividing N. Using Euclidean gcd algorithm, $\left(p_{i},\left(p_{1} p_{2} \ldots p_{n}\right)+1\right)=\left(p_{i}, 1\right)=1$, and so $p_{i} \nmid N$. So, $p \neq p_{i}$ for any i, and p is a new prime \downarrow.

Note: If you take first n primes and compute $a_{n}=\left(p_{1} p_{2} \ldots p_{n}\right)+1$, it's an open problem whether all $a_{n}(2,3,7,31,211,2311,30031 \ldots$), are squarefree (no repeated factors).

Theorem 9 (Euler). There are infinitely many primes

Proof (sketch) by contradiction. Suppose there are finitely many primes p_{1}, p_{2}, \ldots, p_{m}. Then any positive integer n can be uniquely written as $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{m}^{e_{m}}$ with $e_{1}, e_{2} \ldots e_{m} \geq 0$. Consider product:

$$
\begin{gathered}
\Sigma=\left(1+\frac{1}{p_{1}}+\frac{1}{p_{1}^{2}}+\frac{1}{p_{1}^{3}} \ldots\right)\left(1+\frac{1}{p_{2}}+\frac{1}{p_{2}^{2}}+\frac{1}{p_{2}^{3}} \ldots\right) \ldots\left(1+\frac{1}{p_{m}}+\frac{1}{p_{m}^{2}} \ldots\right) \\
\quad \text { where }\left(1+\frac{1}{p_{i}}+\frac{1}{p_{i}^{2}}+\frac{1}{p_{i}^{3}} \ldots\right)=\frac{1}{1-\frac{1}{p_{i}}}<\infty
\end{gathered}
$$

Since each term is a finite positive number, Σ is also a finite positive number. After expanding Σ, we can pick out any combination of terms to get

$$
\left(\ldots \frac{1}{p_{1}^{e_{1}}} \ldots\right)\left(\ldots \frac{1}{p_{2}^{e_{2}}} \ldots\right) \ldots\left(\ldots \frac{1}{p_{m}^{e_{m}}} \ldots\right)=\frac{1}{n}
$$

which means that Σ is the sum of the reciprocals of all positive integers. Since all the terms are positive, we can rearrange the terms to get

$$
\Sigma=\frac{1}{1}+\frac{1}{2}+\frac{1}{3} \cdots \frac{1}{n} \cdots=\lim _{n \rightarrow \infty} H_{n}=\infty
$$

and so Σ diverges, which contradicts finiteness of Σ (乡).
Note: Euler's proof shows that $\sum_{p \text { prime }} \frac{1}{p}$ diverges
Some famous conjectures about primes
Goldbach Conjecture
Every even integer >2 is the sum of two primes
Twin Prime Conjecture
There are infinitely many twin primes ($n, n+2$ both prime)

Mersenne Prime Conjecture

There are infinitely many Mersenne primes, ie., primes of the form $2^{n}-1$. Note: if $2^{n}-1$ is prime, then n itself must be a prime.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

