
Lecture 17
More on Generating Functions, Two Squares Theorem

Generating Functions - for a sequence a0 . . . we can defineA(x) = a nn≥0 a xn.
Eg - if {an} satisfies a linear recurrence = a 2

0 + a1x+ a2x . . . then A(x) will be
a rational function of x. If we know A(x) then an can be obtained as

∑
coefficients

of xn in A(x).

1. If an = rn for some fixed r then A(x) = 1 + rx+ r2x2 · · · = 1
1 rx .−

2. If A(x) is a generating function for {an} and B(x) for {bn}, and α, β are
constants, then {αan + βbn} has generating function αA(x) + βB(x).∑

(αan + βbn)xn = α
∑

anx
n + β

∑
bnx

n

3. Shift - if A(x) is generating function for {an}, then xA(x) is generating
function for sequence {an 1} (ie., {0, a0, a1, . . . })−

4. Generating function for {nan} is dA(x)x dx .

A(x) =
∑

a xnn

n≥0

dA(x)
= nanx

n−1
dx

n≥0

dA(x)

∑
x =

dx
n

∑
nanx

n

≥0

Eg.

1
= 1 + x+ x2 . . .

1
1
− x

= 1 + 2x+ 3x2 . . .
(1− x)2

x
so = x+ 2x2 + 3x3

(1− x)
· · · =

∑
nxn

2

Eg. Generating function for {n2an} is

d
x
dx

(
d

x A(x)
dx

)
dA d2A

= x + x2
dx dx2



5.

A(x) = a0 + a1x+ a2x
2 . . .

B(x) = b0 + b1x+ b2x
2 . . .

A(x)B(x) = (a0 + a1x+ a2x
2 . . . )(b0 + b1x+ b2x

2 . . . )

= a0b0 + (a1b0 + b 2
1a0)x+ (a2b0 + a1b1 + a0b2)x . . .

n

= generating function for {cn}, cn =
k

∑
akbn−k

=0

6. Can∑ be useful, when we want to evaluate partial sums of series (e.g.,
an). Useful technique - plug in roots of unity.

k≡1 (mod 7)

Eg. We know the generating function for {( 1 )n2 } is 1
1− 1x2

ie., 1 +

( 2
1
)
x+

(
1
)

1
x2

2
· · · =

2 1− 1x2

∑ ( )n 4 8
1 1

= 1 + + . .
2

(
1

.
2

)
2

n≡0 mod 4

( )
1 1 16

= = =
1− ( 1 )4 12 − 1 15

16

Another way to see it: plug in 4 roots of unity (z4 − 1 = 0, z = ±1,±i)(
1
) (

1
)2 ( 3

1 1
1 + + + .

2 2

)
. . = = 2

2 1 1 (A)( ) ( ) 2
2 ( )3

−

1 1 1 1 2
1 + − + − + − . . . = =1 (B)

2 2 2 1 + 3
2

1
1

(
1 1

+ i

)
+

( 2 3
1 2

i + =
2

)
i

2

(
2

)
. . . = (C)

1
2

− 1 i 2− i
2

1 +

(
1 2− i

)
+

(
1− i
2

)
+

( 3
1 1

2
− i . . . = =

2

)
1 + 1 (D)

i 2 + i
2

Add them, and use the fact that

n n n n

{
0 n 6≡ 0 mod 4

1 + (−1) + (i) + (−i) =
4 n ≡ 0 mod 4



)
2

4

(
1

1 +

( 4

+

(
1
)8

2 2
. . . =

2 2

)
2 + + +

3 2− i 2 + i

n
64

=
15

n 0

∑ 1

2
≡ mod 4

( )
16

=
15

Eg. n ≡ 3 mod 4, a+ ( 1 ) . . . xi2

1
= 1 +

12

( 2
1 1

+ . . .(2

) (
2

)
1 1 1

= 1 + i
i2 2

)
+

( 2

i . . .[ 2

)
1

=
(−1)3

−1 1 +

( 2
1

2

)
+ . . .

(
1

3

)3

. . .

]

If we want to evaluate
∑

1
n 3 mod 4 2n then multiply (A), (B), (C), (D) by 1−3,≡

(−1)−3, i−3, (−i)−3 and then add.

7. Zeta functions are very much like geometric functions, so many of the same
techniques apply (differentiation is trickier).

Eg. To calculate S = −1 + 1 − 1 + 1 . . . This is Z(f, 2) when f(n) =4 9 16 −1. Two
ways of calculating this S.

1 1 1
ζ(2) = 1 + + + . . .

4 9 16
π2

=
6

1 1 1
ζ(2) + S = 2

1

(
+ + . . .(4 16 36

1 1

)
= + . . .

2 12 22

1

)
= ζ(2)

2

S =
−π2

12

or



1 1 1−S = 1− +
4 9

− . . .
16

=

(
1 1 1 1 1

1− − − . . .
2 2 162

)
p odd

(
1 + + + . . .

2 4 p2 p4

)
π2

∏
ζ(2) =

6

=
∑ 1

n2

=

(
1 1 1

1 + + + . . .

) ∏ (
1 1

1 + + + . . .
22 42 162 p2 p4

p odd

)
Only differ at the Euler factor at 2:

(−S) 1 1

2 =
− 22 −

1
42 . . .

π 1 + 1
2 + 1( 2). . .6 z 4z

1
=
− 1 1( 4 1− 1

4

− 1
1− 1

4

1
=

)
2

so −π
2

S = 12 .

Theorem 57 (Two Square Theorem). A prime p is a sum of two integer squares if
and only if p = 2 or p ≡ 1 mod 4.

Proof. If p = 2 then 2 = 12 + 12, so assume p odd from now on. If p = a2 + b2

then one of a and b must be event and one must be odd, since odd2 1 mod 4
and even2

≡
≡ 0 mod 4 ⇒ p ≡ 1 mod 4 - ie., condition of being 1 mod 4 is

necessary.

Reduction: Need to show that any prime p ≡ 1 mod 4 is sum of two squares.
We’ll show by (strong) induction on p - ie., assume every prime q < p which is 1
mod 4 is a sum of two squares.

Lemma 58. There’s a positive integer < p such that a2 +m2 = mp.

Proof. 1 is a quadratic residue mod p so there exists some integer x such that
x2 ≡ −1 mod p (can assume that |x| < p because 0,±1,±22 · · · ± p−1

2 is a
complete residue system mod p). Therefore p|x2 + 1 and

2

x2 + 1 < p + 1 < p24 ,
so x2 + 1 = mp with 0 < m < p. �



Let m be the smallest positive integer such that mp is a sum of 2 integer squares.
If m = 1 we’re done with the induction step. If m > 1 we’ll get a contradiction
by constructing a smaller m. Assume m > 1. We have a2 + b2 = mp, so
|a|, |b| < p since a2, b2 ≤ a2 + b2 = mp, p2.

First, (a, b) must be 1. Else if g = (a, b) > 1 then (a )2 + ( b )2g g would be a smaller
integer multiple of p. (Note: g < p so dividing by g2 doesn’t cancel p).

Next, m must be odd. If not, then a2 + b2 is even, so a and b have same parity
(in fact, both odd since (a, b) = 1). Then(

a+ b
)2

1
+

(
a− b

)2
1 m

= (a2 + b2) = mp =
2 2 2 2

(
2

)
p

contradicting minimality of m.

Now let q be an odd prime dividing m, let m = qn.

a2 + b2 = mp = qnp⇒ a2 + b2 ≡ 0 mod q

Note that q - a and q - b (otherwise q divides both a and b, contradicting
(a, b) = 1). So

(ab−1)2 ≡ −1 mod q

⇒ q ≡ 1 mod 4

By induction hypothesis, q = c2 + d2 is a sum of two squares.

a2

2

≡ −b2 mod q

c ≡ −d2 mod q

(ac)2 ≡ (bd)2 mod q

ac ≡ ±bd mod q

Assume wlog that ac ≡ bd mod q (if ac ≡ −bd mod q, replace c with −c in
q = c2 + d2). We now have

a2 + b2 = pqn

c2 + d2 = q

(a2 + b2)(c2 + d2) = pq2n

(ac− bd)2 + (ad+ bc)2 = pq2n (”miracle of complex numbers”)

Now, we know q|ac− bd, so also divides ad+ bc, so ad+ bc ≡ 0 mod q, since

(ac− bd)2 + (ad+ bc)2 ≡ (a2 + b2) (c2 + d2︸ )

q

≡ 0 mod q

︷︷ ︸



so (
ac− bd

q

)2

+

(
ad+ bc

q

)2

= pn

So we replaced m by n which is < m, resulting in contradiction. ( ) �
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