Lecture 17

More on Generating Functions, Two Squares Theorem

Generating Functions - for a sequence $a_{0} \ldots$ we can define $A(x)=\sum_{a_{n} \geq 0} a_{n} x^{n}$. Eg - if $\left\{a_{n}\right\}$ satisfies a linear recurrence $=a_{0}+a_{1} x+a_{2} x^{2} \ldots$ then $A(x)$ will be a rational function of x. If we know $A(x)$ then a_{n} can be obtained as coefficients of x^{n} in $A(x)$.

1. If $a_{n}=r^{n}$ for some fixed r then $A(x)=1+r x+r^{2} x^{2} \cdots=\frac{1}{1-r x}$.
2. If $A(x)$ is a generating function for $\left\{a_{n}\right\}$ and $B(x)$ for $\left\{b_{n}\right\}$, and α, β are constants, then $\left\{\alpha a_{n}+\beta b_{n}\right\}$ has generating function $\alpha A(x)+\beta B(x)$.

$$
\sum\left(\alpha a_{n}+\beta b_{n}\right) x^{n}=\alpha \sum a_{n} x^{n}+\beta \sum b_{n} x^{n}
$$

3. Shift - if $A(x)$ is generating function for $\left\{a_{n}\right\}$, then $x(x)$ is generating function for sequence $\left\{a_{n-1}\right\}$ (ie., $\left\{0, a_{0}, a_{1}, \ldots\right\}$)
4. Generating function for $\left\{n a_{n}\right\}$ is $x \frac{d A(x)}{d x}$.

$$
\begin{aligned}
A(x) & =\sum_{n \geq 0} a_{n} x^{n} \\
\frac{d A(x)}{d x} & =\sum_{n \geq 0} n a_{n} x^{n-1} \\
x \frac{d A(x)}{d x} & =\sum_{n \geq 0} n a_{n} x^{n}
\end{aligned}
$$

Eg.

$$
\begin{aligned}
\frac{1}{1-x} & =1+x+x^{2} \ldots \\
\frac{1}{(1-x)^{2}} & =1+2 x+3 x^{2} \ldots \\
\text { so } \frac{x}{(1-x)^{2}} & =x+2 x^{2}+3 x^{3} \cdots=\sum n x^{n}
\end{aligned}
$$

Eg. Generating function for $\left\{n^{2} a_{n}\right\}$ is

$$
x \frac{d}{d x}\left(x \frac{d}{d x} A(x)\right)=x \frac{d A}{d x}+x^{2} \frac{d^{2} A}{d x^{2}}
$$

5.

$$
\begin{aligned}
A(x) & =a_{0}+a_{1} x+a_{2} x^{2} \ldots \\
B(x) & =b_{0}+b_{1} x+b_{2} x^{2} \ldots \\
A(x) B(x) & =\left(a_{0}+a_{1} x+a_{2} x^{2} \ldots\right)\left(b_{0}+b_{1} x+b_{2} x^{2} \ldots\right) \\
& =a_{0} b_{0}+\left(a_{1} b_{0}+b_{1} a_{0}\right) x+\left(a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right) x^{2} \ldots \\
& =\text { generating function for }\left\{c_{n}\right\}, \quad c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}
\end{aligned}
$$

6. Can be useful, when we want to evaluate partial sums of series (e.g., $\left.\sum_{k \equiv 1}^{(\bmod 7)} a_{n}\right)$. Useful technique - plug in roots of unity.

Eg. We know the generating function for $\left\{\left(\frac{1}{2}\right)^{n}\right\}$ is $\frac{1}{1-\frac{1}{2} x}$

$$
\begin{aligned}
\text { ie., } 1+\left(\frac{1}{2}\right) x & +\left(\frac{1}{2}\right)^{2} x^{2} \cdots=\frac{1}{1-\frac{1}{2} x} \\
\sum_{n \equiv 0}\left(\frac{1}{2}\right)^{n} & =1+\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{8} \cdots \\
& =\frac{1}{1-\left(\frac{1}{2}\right)^{4}}=\frac{1}{1-\frac{1}{16}}=\frac{16}{15}
\end{aligned}
$$

Another way to see it: plug in 4 roots of unity $\left(z^{4}-1=0, z= \pm 1, \pm i\right)$

$$
\begin{aligned}
1+\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3} \ldots & =\frac{1}{1-\frac{1}{2}} & & =2(\mathrm{~A}) \\
1+\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}\right)^{3} \ldots & =\frac{1}{1+\frac{1}{2}} & & =\frac{2}{3}(\mathrm{~B}) \\
1+\left(\frac{1}{2} i\right)+\left(\frac{1}{2} i\right)^{2}+\left(\frac{1}{2} i\right)^{3} \ldots & =\frac{1}{1-\frac{1}{2} i} & & =\frac{2}{2-i}(\mathrm{C}) \\
1+\left(-\frac{1}{2} i\right)+\left(-\frac{1}{2} i\right)^{2}+\left(-\frac{1}{2} i\right)^{3} \ldots & =\frac{1}{1+\frac{1}{2} i} & & =\frac{2}{2+i}(\mathrm{D})
\end{aligned}
$$

Add them, and use the fact that

$$
1^{n}+(-1)^{n}+(i)^{n}+(-i)^{n}=\left\{\begin{array}{lll}
0 & n \not \equiv 0 & \bmod 4 \\
4 & n \equiv 0 & \bmod 4
\end{array}\right.
$$

$$
\begin{aligned}
4\left(1+\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{8} \cdots\right) & =2+\frac{2}{3}+\frac{2}{2-i}+\frac{2}{2+i} \\
& =\frac{64}{15} \sum_{n \equiv 0}\left(\frac{1}{2}\right)^{n} \\
& =\frac{16}{15}
\end{aligned}
$$

Eg. $n \equiv 3 \bmod 4, a+\left(\frac{1}{2}\right) \ldots x i$

$$
\begin{aligned}
\frac{1}{1^{2}} & =1+\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2} \ldots \\
\frac{1}{i^{2}} & =1+\left(\frac{1}{2} i\right)+\left(\frac{1}{2} i\right)^{2} \ldots \\
\frac{1}{(-1)^{3}} & =-1\left[1+\left(\frac{1}{2}\right)^{2}+\ldots\left(\frac{1}{3}\right)^{3} \ldots\right]
\end{aligned}
$$

If we want to evaluate $\sum_{n \equiv 3 \bmod 4} \frac{1}{2^{n}}$ then multiply (A), (B), (C), (D) by 1^{-3}, $(-1)^{-3}, i^{-3},(-i)^{-3}$ and then add.
7. Zeta functions are very much like geometric functions, so many of the same techniques apply (differentiation is trickier).

Eg. To calculate $S=-1+\frac{1}{4}-\frac{1}{9}+\frac{1}{16} \ldots$ This is $Z(f, 2)$ when $f(n)=-1$. Two ways of calculating this S.

$$
\begin{aligned}
\zeta(2) & =1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16} \ldots \\
& =\frac{\pi^{2}}{6} \\
\zeta(2)+S & =2\left(\frac{1}{4}+\frac{1}{16}+\frac{1}{36} \cdots\right) \\
& =\frac{1}{2}\left(\frac{1}{1^{2}}+\frac{1}{2^{2}} \ldots\right) \\
& =\frac{1}{2} \zeta(2) \\
S & =\frac{-\pi^{2}}{12}
\end{aligned}
$$

or

$$
\begin{aligned}
-S & =1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16} \ldots \\
& =\left(1-\frac{1}{2^{2}}-\frac{1}{4^{2}}-\frac{1}{16^{2}} \ldots\right) \prod_{p \text { odd }}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{4}}+\ldots\right) \\
\zeta(2) & =\frac{\pi^{2}}{6} \\
& =\sum \frac{1}{n^{2}} \\
& =\left(1+\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{16^{2}} \ldots\right) \prod_{p \text { odd }}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{4}}+\ldots\right)
\end{aligned}
$$

Only differ at the Euler factor at 2 :

$$
\begin{aligned}
\frac{(-S)}{\frac{\pi^{2}}{6}} & =\frac{1-\frac{1}{2^{2}}-\frac{1}{4^{2}} \ldots}{1+\frac{1}{z^{2}}+\frac{1}{4 z^{2}} \ldots} \\
& =\frac{1-\frac{1}{4}\left(\frac{1}{1-\frac{1}{4}}\right)}{\left(-\frac{1}{1-\frac{1}{4}}\right)} \\
& =\frac{1}{2}
\end{aligned}
$$

so $S=-\frac{\pi^{2}}{12}$.

Theorem 57 (Two Square Theorem). A prime p is a sum of two integer squares if and only if $p=2$ or $p \equiv 1 \bmod 4$.

Proof. If $p=2$ then $2=1^{2}+1^{2}$, so assume p odd from now on. If $p=a^{2}+b^{2}$ then one of a and b must be event and one must be odd, since odd ${ }^{2} \equiv 1 \bmod 4$ and even ${ }^{2} \equiv 0 \bmod 4 \Rightarrow p \equiv 1 \bmod 4$-ie., condition of being $1 \bmod 4$ is necessary.

Reduction: Need to show that any prime $p \equiv 1 \bmod 4$ is sum of two squares. We'll show by (strong) induction on p - ie., assume every prime $q<p$ which is 1 $\bmod 4$ is a sum of two squares.

Lemma 58. There's a positive integer $<p$ such that $a^{2}+m^{2}=m p$.

Proof. 1 is a quadratic residue $\bmod p$ so there exists some integer x such that $x^{2} \equiv-1 \bmod p\left(\right.$ can assume that $|x|<\frac{p}{2}$ because $0, \pm 1, \pm 2 \cdots \pm \frac{p-1}{2}$ is a complete residue system $\bmod p$). Therefore $p \mid x^{2}+1$ and $x^{2}+1<\frac{p^{2}}{4}+1<p^{2}$, so $x^{2}+1=m p$ with $0<m<p$.

Let m be the smallest positive integer such that $m p$ is a sum of 2 integer squares. If $m=1$ we're done with the induction step. If $m>1$ we'll get a contradiction by constructing a smaller m. Assume $m>1$. We have $a^{2}+b^{2}=m p$, so $|a|,|b|<p$ since $a^{2}, b^{2} \leq a^{2}+b^{2}=m p, p^{2}$.

First, (a, b) must be 1 . Else if $g=(a, b)>1$ then $\left(\frac{a}{g}\right)^{2}+\left(\frac{b}{g}\right)^{2}$ would be a smaller integer multiple of p. (Note: $g<p$ so dividing by g^{2} doesn't cancel p).

Next, m must be odd. If not, then $a^{2}+b^{2}$ is even, so a and b have same parity (in fact, both odd since $(a, b)=1$). Then

$$
\left(\frac{a+b}{2}\right)^{2}+\left(\frac{a-b}{2}\right)^{2}=\frac{1}{2}\left(a^{2}+b^{2}\right)=\frac{1}{2} m p=\left(\frac{m}{2}\right) p
$$

contradicting minimality of m.
Now let q be an odd prime dividing m, let $m=q n$.

$$
a^{2}+b^{2}=m p=q n p \Rightarrow a^{2}+b^{2} \equiv 0 \quad \bmod q
$$

Note that $q \nmid a$ and $q \nmid b$ (otherwise q divides both a and b, contradicting $(a, b)=1)$. So

$$
\begin{aligned}
\left(a b^{-1}\right)^{2} & \equiv-1 \quad \bmod q \\
\quad \Rightarrow q & \equiv 1 \quad \bmod 4
\end{aligned}
$$

By induction hypothesis, $q=c^{2}+d^{2}$ is a sum of two squares.

$$
\begin{aligned}
a^{2} & \equiv-b^{2} \quad \bmod q \\
c^{2} & \equiv-d^{2} \quad \bmod q \\
(a c)^{2} & \equiv(b d)^{2} \quad \bmod q \\
a c & \equiv \pm b d \quad \bmod q
\end{aligned}
$$

Assume wlog that $a c \equiv b d \bmod q($ if $a c \equiv-b d \bmod q$, replace c with $-c$ in $q=c^{2}+d^{2}$). We now have

$$
\begin{aligned}
a^{2}+b^{2} & =p q n \\
c^{2}+d^{2} & =q \\
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) & =p q^{2} n \\
(a c-b d)^{2}+(a d+b c)^{2} & =p q^{2} n \quad(\text { "miracle of complex numbers") }
\end{aligned}
$$

Now, we know $q \mid a c-b d$, so also divides $a d+b c$, so $a d+b c \equiv 0 \bmod q$, since

$$
\begin{aligned}
(a c-b d)^{2}+(a d+b c)^{2} & \equiv\left(a^{2}+b^{2}\right) \underbrace{\left(c^{2}+d^{2}\right)}_{q} \\
& \equiv 0 \bmod q
\end{aligned}
$$

so

$$
\left(\frac{a c-b d}{q}\right)^{2}+\left(\frac{a d+b c}{q}\right)^{2}=p n
$$

So we replaced m by n which is $<m$, resulting in contradiction. (\langle)

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

