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Lecture 16
Generating Functions

Recurrences - kth order: un+k + a1un+k−1 + . . . akuk = 0 where a1 . . . ak are
given constants, u0 . . . uk 1 are starting conditions. (Simple case: u− n2

+ aun+1 +
bun = 0.)

How to solve explicitly - first, write characteristic polynomial (eg., T 2 + aT + b)
then compute roots (λ and µ, assume λ = µ)

Then there are some constants α, β such that u = αλn + βµnn , determined with
starting conditions. For example,(

1 1
)(

α
)

u
=

(
0

λ µ β u1

)

Why is this the solution? We’ll see that any sequence of form αλn+βµn satisfies.
Since starting conditions determine the entire sequence, the system of equations
above shows that with these values of α, β we have the unique solution.

u n
n
′ = αλ + βµn satisfied the recursion
u0 = u′0, u1 = u′1

u2 = −au1 − bu−0
= −au′1 − bu′0
= u′2, etc.

so un = u′n ∀ n.

So all we need is to show that αλn + βµn satisfies linear recurrence.

un + aun 1 + bun−2 = 0−

If {un} satisfies recurrence, then for any constant α {αun} also satisfies recur-
rence, if {vn} also satisfies, then {un + vn} also does⇒ solutions to recurrence
are closed under taking linear combinations, so it’s enough to show that if λ
is root of T 2 + aT + b = 0, then {λn} satisfies the linear recurrence (and by
symmetry µn, and linear combination αλn + βµn also does). Plug in to get

λn + aλn−1 + bλn−2 = 0 which is by definition true

A more illumination reason - suppose {un} satisfies recurrence un + aun−1 +
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bun−2 = 0. Look at generating function with some variable z:

∞

U =
∑

unz
n = u0 + u1z +

n=0 n

∑
unz

n

≥2
∞

azU =
∑

aunz
n+1 = au0z + au znn−1

n=0 n

∑
≥2

∞

bz2U =
n

∑
bunz

n+2 =
=0 n

∑
bun−2z

n

≥2

Add to get

U + azU + bz2U = u0 + (u1 + au0)z +
∑︸(un + aun︷︷1 + bun z−2) n

−
n≥2

0 by recurrence definition

U(1 + az + bz2) = u0 + (u1 + au0)z

︸
u0 + (u1 + au0)z

U =
1 + az + bz2

linear(z)
=

(1− λz)(1− µz)
α β

= + (partial fractions)
1− λz 1− µz∑∞

u zn = α(1 + λz + λ2z2 2
n . . . ) + β(1 + µz + µ z2 . . . )

n=0

un = (αλn + βµn)zn

2



Eg. Fibonacci

Fn = Fn 1 + Fn 2, F0 = 0, F− − 1 = 1

T 2 = T + 1

T 2 − T − 1 = 0

1
√

5 1 +
√

5 1
√

5
T =

±
, λ = , µ =

−
2 2 2

F0 = α+ β = 0

F1 = αλ+ βµ = 1

1
α = √

5
1

β = −√
5(( √ )n ( √ )n

1 1 + 5 1
Fn =

− 5√
5 2

−
2

)

Eg.

un = 6un−1 − 11un−2 + 6un−3

characteristic polynomial = T 3 − 6T 2 + 11T − 6T

= (T − 1)(T − 2)(T − 3)

general solution = α+ β2n + γ3n

If 2nd order with repeated root λ = µ, then general solution un = αλn + βnλn.

Eg.

un = 3un 3u + u−1 − n−2 n−3

⇒ (T − 1)3

general solution = α+ βn+ γn2

Above examples are all homogenous. An example of a non-homogenous linear
recurrence:

un − 5n−1 + 6u 2
n−2 = n

Idea - first solve homogenous and find general solution, then find particular
solution and add the two solutions.

homogenous: ung = α2n + β3n.
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particular: try similar form un = an2 + bn+ c, plug into equation

un − 5un 1 + 6un 2 = 2an2 + (−14a+ 2b)n+ (19a 2− − 7b+ c) = n2−

1 7 15
a = , b = , c = .

2 2 2

general: u = α2n + β3n + 1 (n2n + 7n+ 15)2 .

Eg. Look-and-say sequence

1

11

21

1211

111221

312211

13112221

1113213211

. . .

(http://en.wikipedia.org/wiki/Look-and-say_sequence) Only 1,
2, 3 appear, lengths satisfy recurrence of degree 71. In any such sequence,
eventually splits into sequence of ”atomic” elements which never again interact
with their neighbors. 92 of these containing only 1, 2, 3

Some connections of recurrences to number theory.

Eg.
Fn+1Fn 1 − F 2 n

n = (−1)−

Can prove by induction, or explicitly

λn
Fn =

− µn 1 +
√

5 1
√

5
, λ = , µ =

−
, λ+ µ = 1, λµ =

λ− µ 2 2
−1

2

( 2
λn+1 µn+1 λn−1 µn−1 λn µn

Fn+1Fn n =
−

−1 − F
− −

λ− µ λ− µ
−

λ− µ
λ2n + µ2n − λn

)
+1

(
µn−1 λn−1µ

)
n+1

(
(

)
=

− − λn − µn)2

(λ− µ)2

−λn−1µn−1(λ2
=

− 2λµ+ µ2)

(λ− µ)2

= −(λµ)n−1

= (−1)n
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In particular,
F2k+1F2k−1 = F 2

2k + 1

Eg. If prime p > 5, then p|Fp−1 or p|Fp+1 but not both. First compute Fp
p

1
√ p

1 +
√

5 1 5
Fp =

(
−√

5

((
2

)
−

2

) )
(

1 +
√

5
)p

1
( (

p
)√ (

p
Now = 1 + 5 +

2 2p 1 2

)√ 2 p
5 +

√
· · ·+ 5

)
(

1
√
− 5

)p
1 p

=

(
1

(
p
)√ p 2

− 5 +
√

2 1

(
2

)
5

√
p

− · · · − 5
2

)
( p p

1 +
√

5

2

)
−

(
1
√
− 5

2

)
2

=
2p

((
p
)√

5 +

(
p
)√ 3

5 + +
√ p

5
1 3

· · ·
)

So we have

1 p p 2 p p
F

−3 p−1
p =

2p 1

(( )
+− 1

( √
3

)
5 + · · ·+

(
p− 2

)√
5 +

√
5

)
.

Want to understand Fp mod p

denominator 2p−1 ≡ 1 mod p by Fermat’s Little Theorem
−

numerator
√ p 1

≡ 5 mod p

≡
p−1

5 2 mod p

≡ ±1 mod p

So Fp ≡ ±1 mod p. Then

Fp−1Fp+1 = F 2
p − 1 mod p

Fp−1Fp+1 ≡ 0 mod p

Can’t divide both because Fp = Fp+1 − Fp−1 is not ≡ 0 mod p.

Eg. Sometimes work backwards to show number theoretic properties.
√

b(1 + 3)2n+1c is divisible by 2n+1 ∀ n

Note that 1 +
√

3 and 1
√

− 3 are roots of T 2 − 2T − 2. Easy to check that
an = (1 +

√
3)n + (1

√
− 3)n satisfies√ an+2 − 2an+1 − 2an = 0 and is an integer

sequences. If n odd, then (1 − 3)n is negative and between 0, 1 in absolute
value, so an = b(1 +

√
3)nc for odd n. Set a0 = 2, a1 = 2, now easy to show that

a2n or a2n+1 divisible by 2n+1 by induction, a2n+2 = 2(a2n+1 + a2n).
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