## Lecture 16

## * HQHDMDID) XQFWRQV

Recurrences - $k$ th order: $u_{n+k}+a_{1} u_{n+k-1}+\ldots a_{k} u_{k}=0$ where $a_{1} \ldots a_{k}$ are given constants, $u_{0} \ldots u_{k-1}$ are starting conditions. (Simple case: $u_{n_{2}}+a u_{n+1}+$ $b u_{n}=0$.)

How to solve explicitly - first, write characteristic polynomial (eg., $T^{2}+a T+b$ ) then compute roots ( $\lambda$ and $\mu$, assume $\lambda \neq \mu$ )

Then there are some constants $\alpha, \beta$ such that $u_{n}=\alpha \lambda^{n}+\beta \mu^{n}$, determined with starting conditions. For example,

$$
\left(\begin{array}{cc}
1 & 1 \\
\lambda & \mu
\end{array}\right)\binom{\alpha}{\beta}=\binom{u_{0}}{u_{1}}
$$

Why is this the solution? We'll see that any sequence of form $\alpha \lambda^{n}+\beta \mu^{n}$ satisfies. Since starting conditions determine the entire sequence, the system of equations above shows that with these values of $\alpha, \beta$ we have the unique solution.

$$
\begin{aligned}
u_{n}^{\prime} & =\alpha \lambda^{n}+\beta \mu^{n} \text { satisfied the recursion } \\
u_{0} & =u_{0}^{\prime}, u_{1}=u_{1}^{\prime} \\
u_{2} & =-a u_{1}-b u_{-0} \\
& =-a u_{1}^{\prime}-b u_{0}^{\prime} \\
& =u_{2}^{\prime}, \text { etc. }
\end{aligned}
$$

so $u_{n}=u_{n}^{\prime} \forall n$.
So all we need is to show that $\alpha \lambda^{n}+\beta \mu^{n}$ satisfies linear recurrence.

$$
u_{n}+a u_{n-1}+b u_{n-2}=0
$$

If $\left\{u_{n}\right\}$ satisfies recurrence, then for any constant $\alpha\left\{\alpha u_{n}\right\}$ also satisfies recurrence, if $\left\{v_{n}\right\}$ also satisfies, then $\left\{u_{n}+v_{n}\right\}$ also does $\Rightarrow$ solutions to recurrence are closed under taking linear combinations, so it's enough to show that if $\lambda$ is root of $T^{2}+a T+b=0$, then $\left\{\lambda^{n}\right\}$ satisfies the linear recurrence (and by symmetry $\mu^{n}$, and linear combination $\alpha \lambda^{n}+\beta \mu^{n}$ also does). Plug in to get

$$
\lambda^{n}+a \lambda^{n-1}+b \lambda^{n-2}=0 \text { which is by definition true }
$$

A more illumination reason - suppose $\left\{u_{n}\right\}$ satisfies recurrence $u_{n}+a u_{n-1}+$
$b u_{n-2}=0$. Look at generating function with some variable $z:$

$$
\begin{aligned}
U & =\sum_{n=0}^{\infty} u_{n} z^{n}=u_{0}+u_{1} z+\sum_{n \geq 2} u_{n} z^{n} \\
a z U & =\sum_{n=0}^{\infty} a u_{n} z^{n+1}=\quad a u_{0} z+\sum_{n \geq 2} a u_{n-1} z^{n} \\
b z^{2} U= & \sum_{n=0}^{\infty} b u_{n} z^{n+2}=
\end{aligned} \quad \sum_{n \geq 2} b u_{n-2} z^{n}
$$

Add to get

$$
\begin{aligned}
U+a z U+b z^{2} U & =u_{0}+\left(u_{1}+a u_{0}\right) z+\sum_{n \geq 2} \underbrace{\left(u_{n}+a u_{n-1}+b u_{n-2}\right)}_{0 \text { by recurrence definition }} z^{n} \\
U\left(1+a z+b z^{2}\right) & =u_{0}+\left(u_{1}+a u_{0}\right) z \\
U & =\frac{u_{0}+\left(u_{1}+a u_{0}\right) z}{1+a z+b z^{2}} \\
& =\frac{\text { linear }(z)}{(1-\lambda z)(1-\mu z)} \\
& =\frac{\alpha}{1-\lambda z}+\frac{\beta}{1-\mu z} \quad \text { (partial fractions) } \\
\sum_{n=0}^{\infty} u_{n} z^{n} & =\alpha\left(1+\lambda z+\lambda^{2} z^{2} \ldots\right)+\beta\left(1+\mu z+\mu^{2} z^{2} \ldots\right) \\
u_{n} & =\left(\alpha \lambda^{n}+\beta \mu^{n}\right) z^{n}
\end{aligned}
$$

Eg. Fibonacci

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2}, \quad F_{0}=0, \quad F_{1}=1 \\
T^{2} & =T+1 \\
T^{2}-T-1 & =0 \\
T & =\frac{1 \pm \sqrt{5}}{2}, \quad \lambda=\frac{1+\sqrt{5}}{2}, \quad \mu=\frac{1-\sqrt{5}}{2} \\
F_{0} & =\alpha+\beta=0 \\
F_{1} & =\alpha \lambda+\beta \mu=1 \\
\alpha & =\frac{1}{\sqrt{5}} \\
\beta & =-\frac{1}{\sqrt{5}} \\
F_{n} & =\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
\end{aligned}
$$

Eg.

$$
\begin{aligned}
u_{n} & =6 u_{n-1}-11 u_{n-2}+6 u_{n-3} \\
\text { characteristic polynomial } & =T^{3}-6 T^{2}+11 T-6 T \\
& =(T-1)(T-2)(T-3) \\
\text { general solution } & =\alpha+\beta 2^{n}+\gamma 3^{n}
\end{aligned}
$$

If 2 nd order with repeated root $\lambda=\mu$, then general solution $u_{n}=\alpha \lambda^{n}+\beta n \lambda^{n}$.

Eg.

$$
\begin{aligned}
& \qquad \begin{aligned}
u_{n} & =3 u_{n-1}-3 u_{n-2}+u_{n-3} \\
& \Rightarrow(T-1)^{3} \\
\text { general solution } & =\alpha+\beta n+\gamma n^{2}
\end{aligned}
\end{aligned}
$$

Above examples are all homogenous. An example of a non-homogenous linear recurrence:

$$
u_{n}-5_{n-1}+6 u_{n-2}=n^{2}
$$

Idea - first solve homogenous and find general solution, then find particular solution and add the two solutions.
homogenous: $u_{n_{g}}=\alpha 2^{n}+\beta 3^{n}$.
particular: try similar form $u_{n}=a n^{2}+b n+c$, plug into equation

$$
\begin{aligned}
& u_{n}-5 u_{n-1}+6 u_{n-2}=2 a n^{2}+(-14 a+2 b) n+(19 a-7 b+2 c)=n^{2} \\
& a=\frac{1}{2}, b=\frac{7}{2}, c=\frac{15}{2} .
\end{aligned}
$$

general: $u_{n}=\alpha 2^{n}+\beta 3^{n}+\frac{1}{2}\left(n^{2}+7 n+15\right)$.

Eg. Look-and-say sequence
(http://en.wikipedia.org/wiki/Look-and-say_sequence) Only 1, 2,3 appear, lengths satisfy recurrence of degree 71 . In any such sequence, eventually splits into sequence of "atomic" elements which never again interact with their neighbors. 92 of these containing only $1,2,3$

Some connections of recurrences to number theory.

Eg.

$$
F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}
$$

Can prove by induction, or explicitly

$$
\begin{aligned}
& F_{n}=\frac{\lambda^{n}-\mu^{n}}{\lambda-\mu}, \quad \lambda=\frac{1+\sqrt{5}}{2}, \quad \mu=\frac{1-\sqrt{5}}{2}, \quad \lambda+\mu=1, \quad \lambda \mu=-1 \\
& \begin{aligned}
F_{n+1} F_{n-1}-F_{n}^{2} & =\left(\frac{\lambda^{n+1}-\mu^{n+1}}{\lambda-\mu}\right)\left(\frac{\lambda^{n-1}-\mu^{n-1}}{\lambda-\mu}\right)-\left(\frac{\lambda^{n}-\mu^{n}}{\lambda-\mu}\right)^{2} \\
& =\frac{\lambda^{2 n}+\mu^{2 n}-\lambda^{n+1} \mu^{n-1}-\lambda^{n-1} \mu^{n+1}-\left(\lambda^{n}-\mu^{n}\right)^{2}}{(\lambda-\mu)^{2}} \\
& =\frac{-\lambda^{n-1} \mu^{n-1}\left(\lambda^{2}-2 \lambda \mu+\mu^{2}\right)}{(\lambda-\mu)^{2}} \\
& =-(\lambda \mu)^{n-1} \\
& =(-1)^{n}
\end{aligned}
\end{aligned}
$$

In particular,

$$
F_{2 k+1} F_{2 k-1}=F_{2 k}^{2}+1
$$

Eg. If prime $p>5$, then $p \mid F_{p-1}$ or $p \mid F_{p+1}$ but not both. First compute $F_{p}$

$$
\begin{aligned}
F_{p} & =\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{p}-\left(\frac{1-\sqrt{5}}{2}\right)^{p}\right) \\
\operatorname{Now}\left(\frac{1+\sqrt{5}}{2}\right)^{p} & =\frac{1}{2^{p}}\left(1+\binom{p}{1} \sqrt{5}+\binom{p}{2} \sqrt{5}^{2}+\cdots+\sqrt{5}^{p}\right) \\
\left(\frac{1-\sqrt{5}}{2}\right)^{p} & =\frac{1}{2^{p}}\left(1-\binom{p}{1} \sqrt{5}+\binom{p}{2} \sqrt{5}^{2}-\cdots-\sqrt{5}^{p}\right) \\
\left(\frac{1+\sqrt{5}}{2}\right)^{p}-\left(\frac{1-\sqrt{5}}{2}\right)^{p} & =\frac{2}{2^{p}}\left(\binom{p}{1} \sqrt{5}+\binom{p}{3} \sqrt{5}^{3}+\cdots+\sqrt{5}^{p}\right)
\end{aligned}
$$

So we have

$$
F_{p}=\frac{1}{2^{p-1}}\left(\binom{p}{1}+\binom{p}{3} \sqrt{5}^{2}+\cdots+\binom{p}{p-2} \sqrt{5}^{p-3}+\sqrt{5}^{p-1}\right)
$$

Want to understand $F_{p} \bmod p$

$$
\begin{aligned}
\text { denominator } 2^{p-1} & \equiv 1 \quad \bmod p \text { by Fermat's Little Theorem } \\
\text { numerator } & \equiv \sqrt{5}^{p-1} \quad \bmod p \\
& \equiv 5^{\frac{p-1}{2}} \quad \bmod p \\
& \equiv \pm 1 \quad \bmod p
\end{aligned}
$$

So $F_{p} \equiv \pm 1 \bmod p$. Then

$$
\begin{aligned}
& F_{p-1} F_{p+1}=F_{p}^{2}-1 \quad \bmod p \\
& F_{p-1} F_{p+1} \equiv 0 \quad \bmod p
\end{aligned}
$$

Can't divide both because $F_{p}=F_{p+1}-F_{p-1}$ is not $\equiv 0 \bmod p$.

Eg. Sometimes work backwards to show number theoretic properties.

$$
\left\lfloor(1+\sqrt{3})^{2 n+1}\right\rfloor \text { is divisible by } 2^{n+1} \forall n
$$

Note that $1+\sqrt{3}$ and $1-\sqrt{3}$ are roots of $T^{2}-2 T-2$. Easy to check that $a_{n}=(1+\sqrt{3})^{n}+(1-\sqrt{3})^{n}$ satisfies $a_{n+2}-2 a_{n+1}-2 a_{n}=0$ and is an integer sequences. If $n$ odd, then $(1-\sqrt{3})^{n}$ is negative and between 0,1 in absolute value, so $a_{n}=\left\lfloor(1+\sqrt{3})^{n}\right\rfloor$ for odd $n$. Set $a_{0}=2, a_{1}=2$, now easy to show that $a_{2 n}$ or $a_{2 n+1}$ divisible by $2^{n+1}$ by induction, $a_{2 n+2}=2\left(a_{2 n+1}+a_{2 n}\right)$.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

