Lecture 14

Mobius Inversion Formula, Zeta Functions

Recall:
Mobius function $\mu(n)$ and other functions

$$
\left.\begin{array}{rl}
\mu(n) & = \begin{cases}(-1)^{\omega(n)} & \text { if } n \text { is squarefree } \\
0 & \text { if } n \text { is not squarefree }\end{cases} \\
\omega(n) & =\text { number of primes dividing } n \\
U(n) & =1 \forall n \\
\mathbb{1}(n) & = \begin{cases}1 & n=1 \\
0 & n>1\end{cases} \\
\mu * U & =U * \mu=\mathbb{1}
\end{array}\right\} \begin{array}{ll}
\sum_{d \mid n} \mu(d) & = \begin{cases}1 & n=1 \\
0 & n>1\end{cases}
\end{array}
$$

Theorem 54. Let f be an arithmetic function, and $F=f * U$, so that $F(n)=$ $\sum_{d \mid n} f(d)$. Then $f(n)=\sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) F(d)$.

Proof.

$$
\begin{aligned}
F & =f * U \\
F * \mu & =(f * U) * \mu \\
& =f *(U * \mu) \\
& =f * \nVdash=f
\end{aligned}
$$

Theorem 55. If f and F are arithmetic functions and $f(n)=\sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right)$ for all n, then $F(n)=\sum_{d \mid n} f(d)$ for all n

Proof.

$$
\begin{aligned}
f & =\mu * F \\
& =F * \mu \\
f * U & =F
\end{aligned}
$$

Showed last time that $\phi * U=r_{1}$ (Recall that $r_{1}(n)=n^{1}$ and $\left.\sum_{d \mid n} \phi(d)=n\right)$, and so Mobius inversion says that

$$
\begin{aligned}
& \quad \phi(n)=\sum_{d \mid n} \mu(d) \frac{n}{d}=n \sum_{d \mid n} \frac{\mu(d)}{d} \\
& n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} \\
&=n\left(1-\frac{1}{p_{1}} \cdots-\frac{1}{p_{r}}+\frac{1}{p_{1} p_{2}}+\frac{1}{p_{1} p_{3}} \cdots+\frac{1}{p_{r-1} p_{r}}-\frac{1}{p_{1} p_{2} p_{3}} \cdots+\frac{(-1)^{r}}{p_{1} \cdots p_{r}}\right) \\
&=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{r}}\right) \\
&=n \prod_{r \mid n}\left(1-\frac{1}{p}\right)
\end{aligned}
$$

Eg. There are 100 consecutive doors in a castle that are all closed. Person 1 opens all doors, person n changes state of every nth door, starting with door number n. At the end, which doors will be open? Door number n changes state $d(n)$ number of times at the end, door n open if $d(n)$ is odd.

$$
\begin{aligned}
n & =p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}} \\
d(n) & =\left(e_{1}+1\right)\left(e_{2}+1\right) \ldots\left(e_{r}+1\right)
\end{aligned}
$$

$d(n)$ odd if all e are even \Rightarrow at the end, open doors are $1,4,9,16 \ldots$

Eg. Describe the arithmetic function $\mu * \mu$ - ie., given $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$, what is $(\mu * \mu)(n)$.

Since $\mu * \mu$ is multiplicative, it is enough to know it for a prime power p^{e}.

$$
\begin{aligned}
(\mu * \mu)(n) & =\sum_{d \mid p^{e}} \mu(d) \mu\left(\frac{p^{e}}{d}\right) \\
& =\sum_{0 \leq i \leq e} \mu\left(p^{i}\right) \mu\left(p^{e-i}\right) \\
& =\mu\left(p^{e}\right)+\mu(p) \mu\left(p^{e-1}\right)+\mu\left(p^{2}\right) \mu\left(p^{e-2}\right)+\cdots+\mu\left(p^{e-1}\right) \mu(p)+\mu\left(p^{e}\right)
\end{aligned}
$$

Claim that if $e \geq 3$, then $(\mu * \mu)\left(p^{e}\right)=0$ because for $0 \leq i \leq e$, since $i+(e-i)=$ $e \geq 3$, one is ≥ 2 so $\mu\left(p^{i}\right)$ or $\mu\left(p^{e-i}\right)$ is 0 , so all terms vanish.

$$
\begin{aligned}
& e=0 \quad(\mu * \mu)(1) \quad=\mu(1) \mu(1)=1 \\
& e=1 \quad(\mu * \mu)(p) \quad=\mu(p)+\mu(p)=-2 \\
& e=2 \quad(\mu * \mu)\left(p^{2}\right) \quad=\mu\left(p^{2}\right)+\mu(p) \mu(p)+\mu\left(p^{2}\right)=1
\end{aligned}
$$

$$
(\mu * \mu)(n)=\left\{\begin{array}{lll}
0 & \sum e_{i} \geq 3 \\
\prod_{i=1}^{r} & \begin{cases}-2 & e_{1}=1 \\
1 & e_{1}=2\end{cases} & \text { otherwise }
\end{array}\right.
$$

(0 unless n is cube-free)

Conjecture 56 (Mertens Conjecture). Consider the function $M(n)=\sum_{1 \leq k \leq n} \mu(k)$ - how fast does this grow?

Mertens and Stieltjes independently conjectured that $|M(n)|<\sqrt{n}$, which would imply the Riemann Hypothesis. The claim that

$$
\text { for every } \varepsilon>0, \quad \frac{M(n)}{n^{\frac{1}{2}+\varepsilon}} \Rightarrow 0 \text { as } n \Rightarrow \infty
$$

is equivalent to Riemann Hypothesis.
The strong form was disproved in 1985.
The idea is that $M(n)$ is a sum of ± 1 or 0 terms, expect massive cancelation. If we looked at $\sum \mu(k)$ of only squarefree k only divisible by primes $\leq n$, this sum would be

$$
(1+\mu(2))(1+\mu(3)) \ldots\left(1+\mu\left(\phi_{k}\right)\right)=(1-1)(1-1) \cdots=0
$$

However, this sum includes a lot more integers than just $1 \ldots n$
Zeta Functions - analogue of a generating function.
Suppose we have sequence $a_{0}, a_{1} \ldots$ indexed by positive integers. We introduce generating function

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2} \cdots=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Can think of $x \in \mathbb{R}$ or \mathbb{C} close to 0 , if a_{n} 's don't grow too fast, will converge to a function of x in some small region around 0 .

Eg. $a_{0}, a_{1} \cdots=1$ then

$$
A(x)=1+x+x^{2} \cdots=\frac{1}{1-x}
$$

Eg. $a_{n}=2^{n}+1=2,3,5,9,17 \ldots$, then

$$
\begin{aligned}
\sum a_{n} x^{n} & =\sum\left(1+2^{n}\right) x^{n} \\
& =\sum x^{n}+\sum(2 x)^{n} \\
& =\frac{1}{1-x}+\frac{1}{1-2 x}
\end{aligned}
$$

We're interested in multiplicative structure, we'll use a different kind of generating function. Let $f(n)$ be an arithmetic function, s a formal variable $-\mathrm{eg}, s \in \mathbb{C}$. Define

$$
Z(f, s)=\sum_{n \geq 1} \frac{f(n)}{n^{s}}
$$

It does make sense to talk about when it converges, note that if $f(n)$ doesn't grow too fast, say $|f(n)| \leq n^{m}$ for some constant m, then sum converges for $\Re(s)>m+1$ (because $\left|\frac{f(n)}{n^{s}}\right|<n^{-(1+\varepsilon)}$)

Eg. One of the simplest arithmetic functions is $U(n)=1 \forall n$. Then

$$
Z(U, s)=\sum_{n \geq 1} \frac{1}{n^{s}}=\zeta(s)
$$

which is called the Riemann Zeta Function. Tightly connected with distribution of prime numbers. $\zeta(s)$ has an Euler Product. First,

$$
\begin{aligned}
\sum_{n \geq 1} \frac{1}{n^{2}} & =\left(1+\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{8^{s}} \ldots\right)\left(1+\frac{1}{3^{s}}+\frac{1}{9^{s}} \ldots\right)\left(1+\frac{1}{5^{s}} \ldots\right) \ldots \\
& =\frac{1}{1-\frac{1}{2^{s}}} \frac{1}{1-\frac{1}{3^{s}}} \frac{1}{1-\frac{1}{5^{s}}} \ldots \\
\zeta(s) & =\prod_{p \text { prime }}\left(1-p^{-s}\right)^{-1}
\end{aligned}
$$

This factorization is called an Euler Product

Eg. $\mathbb{1}$ is even simpler

$$
Z(\mathbb{1}, s)=\sum_{n \geq 1} \frac{\mathbb{1}(n)}{n^{s}}=1
$$

Eg.

$$
\begin{aligned}
\zeta(s)^{-1} & =\prod_{p \text { prime }}\left(1-p^{-s}\right) \\
& =\sum_{n \geq 1} \frac{\mu(n)}{n^{s}} \\
& =Z(\mu, s)
\end{aligned}
$$

$$
\text { Note } Z(f * g, s)=Z(f, s) Z(g, s)
$$

$$
\Rightarrow 1=Z(\mathbb{1}, s)
$$

$$
=\underbrace{Z(U, s)}_{\zeta(s)} Z(\mu, s)
$$

In general, if $f(n)$ is multiplicative, then

$$
\begin{aligned}
Z(f, s) & =\sum_{n \geq 1} \frac{f(n)}{n^{s}} \\
& =\prod_{p \text { prime }}\left(1+\frac{f(p)}{p^{s}}+\frac{f\left(p^{2}\right)}{p^{2 s}}+\frac{f\left(p^{3}\right)}{p^{3 s}} \cdots\right)
\end{aligned}
$$

and if f is completely multiplicative then $f\left(p^{e}\right)=f(p)^{e}$, then

$$
\begin{aligned}
Z(f, s) & =\prod_{p \text { prime }} \frac{1}{1-\frac{f(p)}{p^{s}}} \\
& =\prod_{p \text { prime }}\left(1-f(p) p^{-s}\right)^{-1}
\end{aligned}
$$

Some neat facts:
1.

$$
\zeta(2)=\sum_{n \geq 1} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

"Proof". Use

$$
\begin{aligned}
\frac{\sin x}{x} & =\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{4 \pi^{2}}\right)\left(1-\frac{x^{2}}{9 \pi^{2}}\right) \ldots \\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \ldots \\
\frac{\sin x}{x} & =1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!} \ldots
\end{aligned}
$$

so

$$
1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!} \cdots=\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{4 \pi^{2}}\right)\left(1-\frac{x^{2}}{9 \pi^{2}}\right) \cdots
$$

Look at coefficient of x^{2} :

$$
\begin{aligned}
-\frac{1}{6} & =-\frac{1}{\pi^{2}}-\frac{1}{4 \pi^{2}}-\frac{1}{9 \pi^{2}} \ldots \\
\frac{\pi^{2}}{6} & =\sum \frac{1}{n^{2}}
\end{aligned}
$$

2. Look at coefficient of x^{4} to get

$$
\begin{aligned}
\frac{1}{120} & =\frac{1}{\pi^{4}} \sum_{0<i<j} \frac{1}{i^{2} j^{2}} \\
\sum_{0<i<j} \frac{1}{i^{2} j^{2}} & =\frac{\pi^{4}}{120}
\end{aligned}
$$

Adding $\zeta(4)=\sum \frac{1}{i^{4}}$ we get

$$
\begin{aligned}
\sum \frac{1}{i^{4}}+2 \sum \frac{1}{i^{2} j^{2}} & =\zeta(4)+\frac{\pi^{4}}{60} \\
\sum \frac{1}{i^{4}}+2 \sum \frac{1}{i^{2} j^{2}} & =\left(\sum \frac{1}{i^{2}}\right)^{2}=\zeta(2)^{2} \\
\zeta(4)+\frac{\pi^{4}}{60} & =\left(\frac{\pi^{2}}{6}\right)^{2}=\frac{\pi^{4}}{36} \\
\zeta(4) & =\frac{\pi^{4}}{90}
\end{aligned}
$$

3. Probability of a random number being squarefree:

$$
\frac{\text { number of squarefree integers } \leq x}{x} \rightarrow \frac{6}{\pi^{2}} \text { as } x \rightarrow \infty
$$

"Proof".

$$
\begin{aligned}
\zeta(2) & =\frac{\pi^{2}}{6} \\
& =\prod_{p} \frac{1}{1-\frac{1}{p^{2}}} \\
\Rightarrow \prod_{p}\left(1-\frac{1}{p^{2}}\right) & =\frac{6}{\pi^{2}}
\end{aligned}
$$

Probability that random number divisible by $p^{2} \approx \frac{1}{p^{2}}$, probability not $\approx 1-\frac{1}{p^{2}}$. With "independence" $\Rightarrow \prod_{p}\left(1-\frac{1}{p^{2}}\right)=\frac{6}{\pi^{2}}$
4. Probability that 2 random integers are coprime is $\frac{6}{\pi^{2}}$
5. Probability that 4 integers a, b, c, d satisfy $(a, b)=(c, d)$ is 40%

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

