
Lecture 14
Mobius Inversion Formula, Zeta Functions

Recall:

Mobius function µ(n) and other functions

µ(n) =

{
(−1)ω(n) if n is squarefree
0 if n is not squarefree

ω(n) = number of primes dividing n
U(n) = 1{∀ n

1 n = 1
1(n) =

0 n > 1

µ ∗ U = U ∗ µ = 1∑
µ(d) =

{
1 n = 1

0 n > 1
d|n

Theorem∑ 54. Let f be an arithmetic function, and F = f ∗ U , so that F (n) =

d n f(d). Then f(n) = µ(d)F (n ) = µ(n )F (d).|
∑
d|n d

∑
d|n d

Proof.

F = f ∗ U
F ∗ µ = (f ∗ U) ∗ µ

= f ∗ (U ∗ µ)

= f ∗ 1 = f

�

Theorem 55. If f and F are arithmetic functions and f(n) = d|n µ(d)F (n )d for all
n, then F (n) =

∑
d|n f(d) for all n

∑

Proof.

f = µ ∗ F
= F ∗ µ

f ∗ U = F

�
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Showed last time that φ ∗ U = r1 (Recall that r1(n) = n1 and
∑
d n φ(d) = n),|

and so Mobius inversion says that

φ(n) =
∑ n

µ(d) = n
d d

d|

∑ µ(d)

n d|n

n = pe11 p
e2
2 . . . per( r

1 1 1 1 1 1 ( 1)
= 1− + + +

− r

n +( p1
· · · −)( pr )p1p2 p1p3

· · ·
pr 1pr

−
p1p2p3

· · ·
p . . p− 1 . r

1 1 1

)
= n 1− 1− . . .

p1 p2

(
1−

pr

)
= n

∏ 1
1−

p
r|n

( )

Eg. There are 100 consecutive doors in a castle that are all closed. Person 1
opens all doors, person n changes state of every nth door, starting with door
number n. At the end, which doors will be open? Door number n changes state
d(n) number of times at the end, door n open if d(n) is odd.

n = pe11 p
e2
2 . . . perr

d(n) = (e1 + 1)(e2 + 1) . . . (er + 1)

d(n) odd if all e are even⇒ at the end, open doors are 1, 4, 9, 16 . . .

Eg. Describe the arithmetic function µ ∗ µ - ie., given n = pe11 p
e2
2 . . . perr , what is

(µ ∗ µ)(n).

Since µ ∗ µ is multiplicative, it is enough to know it for a prime power pe.

pe
(µ ∗ µ)(n) =

d

∑
µ(d)µ

|pe

(
d

)
= µ(pi)µ(pe−i)

0≤

∑
i≤e

= µ(pe) + µ(p)µ(pe−1) + µ(p2)µ(pe−2) + · · ·+ µ(pe−1)µ(p) + µ(pe)

Claim that if e ≥ 3, then (µ ∗µ)(pe) = 0 because for 0 ≤ i ≤ e, since i+ (e− i) =
e ≥ 3, one is ≥ 2 so µ(pi) or µ(pe−i) is 0, so all terms vanish.
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e = 0 (µ ∗ µ)(1) = µ(1)µ(1) = 1

e = 1 (µ ∗ µ)(p) = µ(p) + µ(p) =
2 2 2

−2

e = 2 (µ ∗ µ)(p ) = µ(p ) + µ(p)µ(p) + µ(p ) = 1

(µ ∗ µ)(n) =

0 { ei ≥ 3

∏ r −2 e1 = 1
i=1

∑
otherwise

1 e1 = 2

(0 unless n is cube-free)

Conjecture 56 (Mertens Conjecture). Consider the function M(n) =
∑

1≤k≤n µ(k)
- how fast does this grow?

Mertens and Stieltjes independently conjectured that |M(n)| <
√
n, which

would imply the Riemann Hypothesis. The claim that

M(n)
for every ε > 0,

n
1 n
+ε
⇒ 0 as

2

⇒∞

is equivalent to Riemann Hypothesis.

The strong form was disproved in 1985.

The idea is that∑M(n) is a sum of ±1 or 0 terms, expect massive cancelation. If
we looked at µ(k) of only squarefree k only divisible by primes ≤ n, this sum
would be

(1 + µ(2))(1 + µ(3)) . . . (1 + µ(φk)) = (1− 1)(1− 1) · · · = 0

However, this sum includes a lot more integers than just 1 . . . n

Zeta Functions - analogue of a generating function.

Suppose we have sequence a0, a1 . . . indexed by positive integers. We introduce
generating function

∞

A(x) = a0 + a1x+ a2x
2 · · · =

n

∑
anx

n

=0

Can think of x ∈ R or C close to 0, if an’s don’t grow too fast, will converge to a
function of x in some small region around 0.
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Eg. a0, a1 · · · = 1 then

A(x) = 1 + x+ x2
1· · · =

1− x

Eg. an = 2n + 1 = 2, 3, 5, 9, 17 . . . , then∑
anx

n =
∑

(1 + 2n)xn

=
∑

xn +
∑

(2x)n

1 1
= +

1− x 1− 2x

We’re interested in multiplicative structure, we’ll use a different kind of generat-
ing function. Let f(n) be an arithmetic function, s a formal variable - eg, s ∈ C.
Define

f(n)
Z(f, s) =

n

∑
ns

≥1

It does make sense to talk about when it converges, note that if f(n) doesn’t
grow too fast, say |f(n) nm for some constant m, then sum converges for
< (because | f

|
(

≤
n)(s) > m+ 1 ns | < n−(1+ε))

Eg. One of the simplest arithmetic functions is U(n) = 1 ∀ n. Then

1
Z(U, s) =

n

∑
= ζ(s)

ns
≥1

which is called the Riemann Zeta Function. Tightly connected with distribution
of prime numbers. ζ(s) has an Euler Product. First,∑ 1 1 1 1 1

=

(
1 1

1 + + + . . .

)(
1 + + . . .

)(
1 + . . .

)
. . .

n2 2s 4s 8s 3s 9s 5s
n≥1

1 1 1
= . . .

1 1
2s 1− 1∏− s 13 − 1

5s

ζ(s) = (1
p prime

− p−s)−1

This factorization is called an Euler Product

Eg. 1 is even simpler
(

Z(1, s)
n

∑ 1 n)
= = 1

ns
≥1
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Eg.

ζ(s)−1 =
pprime

∏
(1− p−s)

µ(n)
=

n
n

∑
s

≥1

= Z(µ, s)

Note Z(f ∗ g, s) = Z(f, s)Z(g, s)

⇒ 1 = Z(1, s)

= Z(U, s)Z(µ, s)

ζ(s)

In general, if f(n) is multiplicative, then

︸ ︷︷ ︸

Z(f, s) =
n

∑ f(n)

ns
≥1∏ (

f(p) f(p2) f(p3)
= 1 + + + . . .

ps p2s p3s
p prime

)
and if f is completely multiplicative then f(pe) = f(p)e, then

1
Z(f, s) =

p

∏
prime 1− f(p)

ps

=
p

∏
(1

prime

− f(p)p−s)−1

Some neat facts:

1.

ζ(2) =
n

∑ 1 π2

=
n2 6

≥1

”Proof”. Use

sinx
=

x

(
x2 x2 x2

1− 1
π2

− 1
4π2

− . . .
9π2

x3

)
x

(
5 x7

)( )
sinx = x− +

3! 5!
− . . .

7!
sinx x2 x4 x6

= 1
x

− +
3! 5!

− . . .
7!
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so
x2 x4 x6 x2 x2

1− + − · · · =

2

(
1

5! 7!
−
π2

)(
1

3!
−

4π2

)(
x2

1−
9π2

)
. . .

Look at coefficient of x :
1 1 1 1− =
6
−
π2
−

4π2
− . . .

9π2

π2

=
6

∑ 1

n2

�

2. Look at coefficient of x4 to get

1 1 1
=

120 π4 i2j2
0<i<j

1

0

∑ π4

∑
=

i2j2 120
<i<j

Adding ζ(4) =
∑

1
i4 we get∑ 1 ∑ 1 π4

+ 2 = ζ(4) +
i4 i2j2 60∑ 1 1 1

+ 2
4

∑
=

i i2j2

(∑
i2

24 2

)2

= ζ(2)2

π π
ζ(4) + =

60

(
π4

=
6 36

π4

)
ζ(4) =

90

3. Probability of a random number being squarefree:

number of squarefree integers ≤ x 6
as x

x
→

π2
→∞

”Proof”.

π2

ζ(2) =
6

=
∏ 1

1− 1( p p2

⇒
∏ 1

1
p

−
p2

)
6

=
π2

Probability that random number divisible by p2 ≈ 1
p2 , probability not ≈ 1− 1

p2 .
With ”independence”⇒ p(1−

1
p2 ) = 6

π2 �
∏
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4. Probability that 2 random integers are coprime is 6
π2

5. Probability that 4 integers a, b, c, d satisfy (a, b) = (c, d) is 40%
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