Lecture 13 Arithmetic Functions

Today - Arithmetic functions, the Möbius function

(Definition) Arithmetic Function: An **arithmetic function** is a function $f : \mathbb{N} \to \mathbb{C}$

Eg.

 $\begin{aligned} \pi(n) &= \text{ the number of primes } \leq n \\ d(n) &= \text{ the number of positive divisors of } n \\ \sigma(n) &= \text{ the sum of the positive divisors of } n \\ \sigma_k(n) &= \text{ the sum of the kth powers of } n \\ \omega(n) &= \text{ the number of distinct primes dividing } n \\ \Omega(n) &= \text{ the number of primes dividing } n \text{ counted with multiplicity} \end{aligned}$

Eg.

 $\begin{aligned} &\sigma(1) = 1 \\ &\sigma(2) = 1 + 2 = 3 \\ &\sigma(3) = 1 + 3 = 4 \\ &\sigma(6) = 1 + 2 + 3 + 6 = 12 \end{aligned}$

(Definition) Perfect Number: A perfect number *n* is one for which $\sigma(n) = 2n$ (eg., 6, 28, 496, etc.)

Big open conjecture: Every perfect number is even.

Note: One can show that if *n* is an even perfect number, then $n = 2^{m-1}(2^m - 1)$ where $2^m - 1$ is a Mersenne prime (Euler)

(Definition) Multiplicative: If *f* is an arithmetic function such that whenever (m, n) = 1 then f(mn) = f(m)f(n), we say *f* is **multiplicative**. If *f* satisfies the stronger property that f(mn) = f(m)f(n) for all *m*, *n* (even if not coprime), we say *f* is **completely multiplicative**

Eg.

$$f(n) = \begin{cases} 1 & n = 1\\ 0 & n < 1 \end{cases}$$

is completely multiplicative. It's sometimes called 1 (we'll see why soon).

Eg. $f(n) = n^k$ for some fixed $k \in \mathbb{N}$ is also completely multiplicative

Eg. $\omega(n)$ is not multiplicative (adds, but $2^{\omega(n)}$ is multiplicative)

Eg. $\phi(n)$ is multiplicative (by CRT)

Note: If *f* is a multiplicative function, then to know f(n) for all *n*, it suffices to know f(n) for prime powers *n*. This is why we wrote

$$\phi(p_1^{e_1} \dots p_r^{e_r}) = \prod p_i^{e_i - 1}(p_i - 1)$$

(Definition) Convolution: The **convolution** of two arithmetic functions f and g is f * g defined by

$$(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

(summing over positive divisors of *n*). Compare this to convolution from calculus or differential equations

$$\begin{split} (f*g)(x) &= \int_{t=-\infty}^{\infty} f(t)g(x-t)dt\\ \text{ or } \int_{t=0}^{x} f(t)g(x-t)dt \quad \text{ if } f(y), g(y) \text{ are } 0 \text{ for } y < 0 \end{split}$$

Eg.

$$f * 1 = 1 * f = f$$
 for every f (check 1)

1 is the identity for convolution

Theorem 48. If f and g are multiplicative then f * g is multiplicative.

Proof. Suppose m and n are coprime. Then any divisor of mn is of the form

 d_1, d_2 , where $d_1|m$ and $d_2|n$, uniquely. So we have

$$(f * g)(mn) = \sum_{d|mn} f(d)g\left(\frac{mn}{d}\right)$$
$$= \sum_{d_1|m} \sum_{d_2|n} f(d_1d_2)g\left(\frac{m}{d_1} \cdot \frac{n}{d_2}\right)$$
$$= \sum_{d_1|m} \sum_{d_2|n} \underbrace{f(d_1)f(d_2)}_{\text{since } (d_1, d_2)=1} \underbrace{g\left(\frac{m}{d_1}\right)g\left(\frac{n}{d_2}\right)}_{\text{since } (\frac{m}{d_1}, \frac{n}{d_2})=1}$$
$$= \left(\sum_{d_1|m} f(d_1)g\left(\frac{m}{d_1}\right)\right) \left(\sum_{d_2|n} f(d_2)g\left(\frac{n}{d_2}\right)\right)$$
$$= (f * g)(m)(f * g)(n)$$

Eg. Let U(n) = 1 for all *n*. Then for any arithmetic function *f*, we have

$$(f * U)(n) = \sum_{d|n} f(d) \underbrace{U\left(\frac{n}{d}\right)}_{=1} = \sum_{d|n} f(d)$$

This is usually called F(n).

If f is multiplicative, then F is multiplicative, by theorem (since U is obviously completely multiplicative) (that's theorem 4.4 in the book). In particular, we compute $U\ast U$

$$(U \ast U)(n) = \sum_{d \mid n} 1 \cdot 1 = \text{number of divisors of } n = d(n)$$

so d(n) is multiplicative.

For a prime power p^{α} , the number of divisors is $\alpha + 1$. So

$$d(p_1^{e_1}\dots p_r^{e_r}) = \prod_{i=1}^r (e_i+1)$$

For the function $r_k(n) = n^k$, we have

$$(r_k * U)(n) = \sum_{d|n} d^k = \sigma_k(n)$$

which is therefore multiplicative.

Since

$$\sigma_k(p^{\alpha}) = 1 + p^k + \dots + p^{k\alpha} = \frac{p^{k(\alpha+1)} - 1}{p^k - 1}$$

we get

$$\sigma_k\left(\prod p_i^{e_i}\right) = \prod_{i=1}^r \frac{p_i^{k(e_i+1)} - 1}{p_i^k - 1}$$

Theorem 49. For any positive integer *n*, we have

$$\sum_{d|n} \phi(n) = n$$

In other words $\phi * U = r_1$.

Proof. Since both sides are multiplicative, enough to show it for prime powers.

$$r_{1}(p^{\alpha}) = p^{\alpha}$$

$$\sum_{d|p^{\alpha}} \phi(d) = \phi(1) + \phi(p) + \dots + \phi(p^{\alpha})$$

$$= 1 + (p-1) + p(p-1) + \dots + p^{\alpha-1}(p-1)$$

$$= 1 + p - 1 + p^{2} - p + p^{3} - p^{2} + \dots + p^{\alpha} - p^{\alpha-1}$$

$$= p^{\alpha}$$

Eg. What is $r_k * r_k$?

$$(r_k * r_k)(n) = \sum_{d|n} d^k \left(\frac{n}{d}\right)^k = \sum_{d|n} n_k = n^k d(n)$$

Other multiplicative functions: (\overline{D}) since $(\frac{mn}{D}) = (\frac{m}{D})(\frac{n}{D})$

There's an interesting multiplicative function - let $\tau(n)$ (Ramanujan's tau function) be the coefficient of q^n in $q \prod_{i=1}^{\infty} (1-q^i)^{24}$. Then

$$\begin{aligned} \tau(1) &= 1 \\ \tau(2) &= -24 \\ \tau(3) &= 252 \\ \tau(6) &= -6048 = -24 \cdot 252 = \tau(2)\tau(3) \\ \text{etc.} \end{aligned}$$

Theorem 50. $\tau(n)$ is multiplicative (deep)

Proof uses modular forms.

A famous open conjecture is Lehmer's conjecture: $\tau(n) \neq 0$ for every natural number n.

Proposition 51. f * g = g * f for any arithmetic functions f, g (ie., convolution is commutative)

Proof.

$$(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

as d ranges over divisors of n, so does $\frac{n}{d}=d'$ so we write

$$(f*g)(n) = \sum_{d'\mid n} f(d')g(\frac{n}{d'}) = \sum_{d\mid n} f\left(\frac{n}{d}\right)g\left(\frac{n}{\frac{n}{d}}\right) = \sum_{d\mid n} f\left(\frac{n}{d}\right)g(d) = (g*f)(n)$$

Proposition 52.

$$f \ast (g \ast h) = (f \ast g) \ast h$$

*(ie., * is associative)*

Proof left as exercise.

The Möbius mu function is defined to be

$$\mu(n) = \begin{cases} (-1)^{\omega(n)} & \text{if } n \text{ is square free} \\ 0 & \text{otherwise} \end{cases}$$

remembering that $\omega(n)$ was additive, it's easy to see $\mu(n)$ is a multiplicative function

$$\mu(n) = \begin{cases} (-1)^r & \text{if } n = p_1 \dots p_r \text{ for distinct primes } p_i \\ 0 & \text{if some } p^2 \text{ divides } n \end{cases}$$

Remember the function U(n) = 1 for all n.

Theorem 53.

$$\mu * U = \mathbb{1} \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{otherwise} \end{cases}$$

Proof. μ , U are multiplicative, so $\mu * U$ is too. So enough to show that $(\mu * U)(1) = 1$ and $(\mu * U)(p^{\alpha}) = 0$ for prime powers p^{α} .

The first is trivial:

$$(\mu * U)(1) = \sum_{d|1} \mu(1)U(1) = 1 \cdot 1 = 1$$
$$(\mu * U)(p^{\alpha}) = \sum_{d|p^{\alpha}} \mu(p^{\alpha})U(p^{\alpha})$$
$$= \mu(1) + \mu(p)$$
$$= 1 + (-1)$$
$$= 0$$

So $\mu * U = 1$.

18.781 Theory of Numbers Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.