Lecture 13

Arithmetic Functions

Today - Arithmetic functions, the Möbius function
(Definition) Arithmetic Function: An arithmetic function is a function f : $\mathbb{N} \rightarrow \mathbb{C}$

Eg.

$$
\begin{aligned}
\pi(n) & =\text { the number of primes } \leq n \\
d(n) & =\text { the number of positive divisors of } n \\
\sigma(n) & =\text { the sum of the positive divisors of } n \\
\sigma_{k}(n) & =\text { the sum of the kth powers of } n \\
\omega(n) & =\text { the number of distinct primes dividing } n \\
\Omega(n) & =\text { the number of primes dividing } n \text { counted with multiplicity }
\end{aligned}
$$

Eg.

$$
\begin{aligned}
& \sigma(1)=1 \\
& \sigma(2)=1+2=3 \\
& \sigma(3)=1+3=4 \\
& \sigma(6)=1+2+3+6=12
\end{aligned}
$$

(Definition) Perfect Number: A perfect number n is one for which $\sigma(n)=2 n$ (eg., 6, 28, 496, etc.)

Big open conjecture: Every perfect number is even.
Note: One can show that if n is an even perfect number, then $n=2^{m-1}\left(2^{m}-1\right)$ where $2^{m}-1$ is a Mersenne prime (Euler)
(Definition) Multiplicative: If f is an arithmetic function such that whenever $(m, n)=1$ then $f(m n)=f(m) f(n)$, we say f is multiplicative. If f satisfies the stronger property that $f(m n)=f(m) f(n)$ for all m, n (even if not coprime), we say f is completely multiplicative

Eg.

$$
f(n)= \begin{cases}1 & n=1 \\ 0 & n<1\end{cases}
$$

is completely multiplicative. It's sometimes called $\mathbb{1}$ (we'll see why soon).

Eg. $f(n)=n^{k}$ for some fixed $k \in \mathbb{N}$ is also completely multiplicative

Eg. $\omega(n)$ is not multiplicative (adds, but $2^{\omega(n)}$ is multiplicative)

Eg. $\phi(n)$ is multiplicative (by CRT)
Note: If f is a multiplicative function, then to know $f(n)$ for all n, it suffices to know $f(n)$ for prime powers n. This is why we wrote

$$
\phi\left(p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}\right)=\prod p_{i}^{e_{i}-1}\left(p_{i}-1\right)
$$

(Definition) Convolution: The convolution of two arithmetic functions f and g is $f * g$ defined by

$$
(f * g)(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)
$$

(summing over positive divisors of n). Compare this to convolution from calculus or differential equations

$$
\begin{aligned}
(f * g)(x) & =\int_{t=-\infty}^{\infty} f(t) g(x-t) d t \\
& \text { or } \int_{t=0}^{x} f(t) g(x-t) d t \quad \text { if } f(y), g(y) \text { are } 0 \text { for } y<0
\end{aligned}
$$

Eg.

$$
f * \mathbb{1}=\mathbb{1} * f=f \text { for every } f(\text { check } 1)
$$

$\mathbb{1}$ is the identity for convolution

Theorem 48. If f and g are multiplicative then $f * g$ is multiplicative.

Proof. Suppose m and n are coprime. Then any divisor of $m n$ is of the form
d_{1}, d_{2}, where $d_{1} \mid m$ and $d_{2} \mid n$, uniquely. So we have

$$
\begin{aligned}
(f * g)(m n) & =\sum_{d \mid m n} f(d) g\left(\frac{m n}{d}\right) \\
& =\sum_{d_{1} \mid m} \sum_{d_{2} \mid n} f\left(d_{1} d_{2}\right) g\left(\frac{m}{d_{1}} \cdot \frac{n}{d_{2}}\right) \\
& =\sum_{d_{1} \mid m} \sum_{d_{2} \mid n} \underbrace{f\left(d_{1}\right) f\left(d_{2}\right)}_{\text {since }\left(d_{1}, d_{2}\right)=1} \underbrace{g\left(\frac{m}{d_{1}}\right) g\left(\frac{n}{d_{2}}\right)}_{\text {since }\left(\frac{m}{d_{1}}, \frac{n}{d_{2}}\right)=1} \\
& =\left(\sum_{d_{1} \mid m} f\left(d_{1}\right) g\left(\frac{m}{d_{1}}\right)\right)\left(\sum_{d_{2} \mid n} f\left(d_{2}\right) g\left(\frac{n}{d_{2}}\right)\right) \\
& =(f * g)(m)(f * g)(n)
\end{aligned}
$$

Eg. Let $U(n)=1$ for all n. Then for any arithmetic function f, we have

$$
(f * U)(n)=\sum_{d \mid n} f(d) \underbrace{U\left(\frac{n}{d}\right)}_{=1}=\sum_{d \mid n} f(d)
$$

This is usually called $F(n)$.
If f is multiplicative, then F is multiplicative, by theorem (since U is obviously completely multiplicative) (that's theorem 4.4 in the book). In particular, we compute $U * U$

$$
(U * U)(n)=\sum_{d \mid n} 1 \cdot 1=\text { number of divisors of } n=d(n)
$$

so $d(n)$ is multiplicative.
For a prime power p^{α}, the number of divisors is $\alpha+1$. So

$$
d\left(p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}\right)=\prod_{i=1}^{r}\left(e_{i}+1\right)
$$

For the function $r_{k}(n)=n^{k}$, we have

$$
\left(r_{k} * U\right)(n)=\sum_{d \mid n} d^{k}=\sigma_{k}(n)
$$

which is therefore multiplicative.

Since

$$
\sigma_{k}\left(p^{\alpha}\right)=1+p^{k}+\cdots+p^{k \alpha}=\frac{p^{k(\alpha+1)}-1}{p^{k}-1}
$$

we get

$$
\sigma_{k}\left(\prod p_{i}^{e_{i}}\right)=\prod_{i=1}^{r} \frac{p_{i}^{k\left(e_{i}+1\right)}-1}{p_{i}^{k}-1}
$$

Theorem 49. For any positive integer n, we have

$$
\sum_{d \mid n} \phi(n)=n
$$

In other words $\phi * U=r_{1}$.

Proof. Since both sides are multiplicative, enough to show it for prime powers.

$$
\begin{aligned}
r_{1}\left(p^{\alpha}\right) & =p^{\alpha} \\
\sum_{d \mid p^{\alpha}} \phi(d) & =\phi(1)+\phi(p)+\cdots+\phi\left(p^{\alpha}\right) \\
& =1+(p-1)+p(p-1)+\cdots+p^{\alpha-1}(p-1) \\
& =1+p-1+p^{2}-p+p^{3}-p^{2}+\cdots+p^{\alpha}-p^{\alpha-1} \\
& =p^{\alpha}
\end{aligned}
$$

Eg. What is $r_{k} * r_{k}$?

$$
\left(r_{k} * r_{k}\right)(n)=\sum_{d \mid n} d^{k}\left(\frac{n}{d}\right)^{k}=\sum_{d \mid n} n_{k}=n^{k} d(n)
$$

Other multiplicative functions: (\bar{D}) since $\left(\frac{m n}{D}\right)=\left(\frac{m}{D}\right)\left(\frac{n}{D}\right)$
There's an interesting multiplicative function - let $\tau(n)$ (Ramanujan's tau function) be the coefficient of q^{n} in $q \prod_{i=1}^{\infty}\left(1-q^{i}\right)^{24}$. Then

$$
\begin{aligned}
& \tau(1)=1 \\
& \tau(2)=-24 \\
& \tau(3)=252 \\
& \tau(6)=-6048=-24 \cdot 252=\tau(2) \tau(3)
\end{aligned}
$$

etc.

Theorem 50. $\tau(n)$ is multiplicative (deep)

Proof uses modular forms.
A famous open conjecture is Lehmer's conjecture: $\tau(n) \neq 0$ for every natural number n.

Proposition 51. $f * g=g * f$ for any arithmetic functions f, g (ie., convolution is commutative)

Proof.

$$
(f * g)(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)
$$

as d ranges over divisors of n, so does $\frac{n}{d}=d^{\prime}$ so we write

$$
(f * g)(n)=\sum_{d^{\prime} \mid n} f\left(d^{\prime}\right) g\left(\frac{n}{d^{\prime}}\right)=\sum_{d \mid n} f\left(\frac{n}{d}\right) g\left(\frac{n}{\frac{n}{d}}\right)=\sum_{d \mid n} f\left(\frac{n}{d}\right) g(d)=(g * f)(n)
$$

Proposition 52.

$$
f *(g * h)=(f * g) * h
$$

(ie., * is associative)
Proof left as exercise.
The Möbius mu function is defined to be

$$
\mu(n)= \begin{cases}(-1)^{\omega(n)} & \text { if } n \text { is square free } \\ 0 & \text { otherwise }\end{cases}
$$

remembering that $\omega(n)$ was additive, it's easy to see $\mu(n)$ is a multiplicative function

$$
\mu(n)= \begin{cases}(-1)^{r} & \text { if } n=p_{1} \ldots p_{r} \text { for distinct primes } p_{i} \\ 0 & \text { if some } p^{2} \text { divides } n\end{cases}
$$

Remember the function $U(n)=1$ for all n.

Theorem 53.

$$
\mu * U=\mathbb{1} \begin{cases}1 & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. μ, U are multiplicative, so $\mu * U$ is too. So enough to show that $(\mu * U)(1)=$ 1 and $(\mu * U)\left(p^{\alpha}\right)=0$ for prime powers p^{α}.

The first is trivial:

$$
\begin{aligned}
(\mu * U)(1) & =\sum_{d \mid 1} \mu(1) U(1)=1 \cdot 1=1 \\
(\mu * U)\left(p^{\alpha}\right) & =\sum_{d \mid p^{\alpha}} \mu\left(p^{\alpha}\right) U\left(p^{\alpha}\right) \\
& =\mu(1)+\mu(p) \\
& =1+(-1) \\
& =0
\end{aligned}
$$

So $\mu * U=1$.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

