Lecture 11

Square Roots, Tonelli's Algorithm, Number of Consecutive Pairs of Squares mod p

Defined the Jacobi Symbol - used to compute Legendre Symbol efficiently (quadratic character)

Eg.

$$
\begin{aligned}
(1729 \mid 223)= & (168 \mid 223)=(4 \cdot 42 \mid 223)=(42 \mid 223) \\
= & (2 \mid 223)(21 \mid 223)=(21 \mid 223)=(223 \mid 21)=(13 \mid 21) \\
= & (21 \mid 13)=(8 \mid 13)=(2 \mid 13)=-1 \\
& (-1 \mid p)=\left\{\begin{array}{lll}
-1 & \text { if } p \equiv 3 & \bmod 4 \\
1 & \text { if } p \equiv 1 & \bmod 4
\end{array}\right. \\
& (2 \mid p)=\left\{\begin{array}{lll}
-1 & \text { if } p \equiv \pm 3 & \bmod 8 \\
1 & \text { if } p \equiv \pm 1 & \bmod 8
\end{array}\right.
\end{aligned}
$$

Lemma 43. If p, q, r are distinct odd primes, and $q \equiv r \bmod 4 p$, then $(p \mid q)=(p \mid r)$.

Proof. We know $(q \mid p)=(r \mid p)$ since $q \equiv r \bmod p$. Also, q and r are both either 1 $\bmod 4$ or both $3 \bmod 4$. So

$$
\begin{aligned}
(-1)^{\frac{p-1}{2} \frac{q-1}{2}} & =(-1)^{\frac{p-1}{2} \frac{r-1}{2}} \\
(p \mid q) & =(q \mid p)(-1)^{\frac{p-1}{2} \frac{q-1}{2}} \\
& =(r \mid p)(-1)^{\frac{p-1}{2} \frac{r-1}{2}} \\
& =(p \mid r)
\end{aligned}
$$

Eg. Characterize the primes p for which 17 is a square $\bmod p$. It's clear that 17 is square mod 2 . We see that since $17 \equiv 1 \bmod 4$, so if $q \equiv r \bmod 17$ then $(17 \mid q)=(17 \mid r)$. So we only need to look mod 17 to see when $(17 \mid q)=(q \mid 17)=1$. Go through $\bmod 17: \pm 1, \pm 2, \pm 4, \pm 8 \bmod 17$ are nonzero square classes, so 17 is a square $\bmod q$ iff $q=2,17$, or $\pm 1, \pm 2, \pm 4, \pm 8 \bmod 17$.

If we had asked for 19 , we need to look at classes $\bmod (4 \cdot 19)$, since $19 \not \equiv 1$ $\bmod 4$. (If $q=1 \bmod 4$ then $(19 \mid q)=(q \mid 19)$, so we need q to be a square \bmod 19. If $q=3 \bmod 4$ then $(19 \mid q)=-(q \mid 19)$, we need q to be not square $\bmod 19)$

Euclidean gcd Algorithm - Given $a, b \in \mathbb{Z}$, not both 0 , find (a, b)

1. If $a, b<0$, replace with negative
2. If $a>b$, switch a and b
3. If $a=0$, return b
4. Since $a>0$, write $b=a q+r$ with $0 \leq r<a$. Replace (a, b) with (r, a) and go to Step 3.

Tonelli's Algorithm - To compute square roots mod p (used to solve $x^{2} \equiv a$ $\bmod p)$. Need a quadratic non-residue $\bmod p$, called n. Let g be a primitive root $\bmod p$. Now let $p-1=2^{s} t$, for t odd. We know n is a power of g, say $n \equiv g^{k}$. Set $c \equiv n^{t} \equiv g^{k t}$.

Claim: The order of c is exactly 2^{s}.

Proof.

$$
\begin{aligned}
c^{2^{s}} & \equiv\left(g^{k t}\right)^{2^{s}} \\
& \equiv\left(g^{t 2^{s}}\right)^{k} \\
& \equiv\left(g^{p-1}\right)^{k} \\
& \equiv 1 \quad \bmod p
\end{aligned}
$$

So ord (c) has to divide 2^{s}, so it's a power of 2 . If we can show that $c^{2^{s-1}} \not \equiv 1$ $\bmod p$ then order has to be 2^{s}.

$$
\begin{aligned}
c^{2^{s-1}} & \equiv\left(g^{k t}\right)^{2^{s-1}} \\
& \equiv\left(g^{t 2^{s-1}}\right)^{k} \\
& \equiv\left(g^{(p-1) / 2}\right)^{k} \quad \bmod p \\
& \equiv(-1)^{k} \quad \bmod p, \text { since } g \text { is a primitive root }
\end{aligned}
$$

Note that k is odd since otherwise $n \equiv g^{k}$ would be a quadratic residue, so we get $c^{2^{s-1}} \equiv-1 \bmod p$, proving claim that $\operatorname{ord}(c)=2^{s}$

Lemma 44. If a, b are coprime to p and have order $2^{j} \bmod p(f o r j>0)$ then $a b$ has order 2^{k} for some $k<j$.

Proof. Since $a^{2^{j}} \equiv 1 \bmod p,\left(a^{2^{j-1}}\right)^{2} \equiv 1 \bmod p$, we have $a^{2 j-1} \equiv \pm 1 \bmod p$. So we must have $a^{2^{j-1}} \equiv-1 \bmod p$, since $\operatorname{ord}(a)=2^{j}$. Similarly $b^{2^{j-1}} \equiv-1$ $\bmod p$. Therefore, $(a b)^{2^{j-1}} \equiv 1 \bmod p$, so order has to divide 2^{j-1}, so $k<j$.

Proof of Tonelli's Algorithm. First check (by repeated squaring) if $a^{(p-1) / 2} \equiv 1$ $\bmod p$. If not, terminate with "false." So assume now on that $a^{(p-1) / 2} \equiv 1$ $\bmod p$.

Set $A=a$ and $b=1$. At each step $a=A b^{2}\left(a \equiv A b^{2} \bmod p\right)$ At the end, want $A=1$, so b is square root of $a \bmod p$.

Each step: decrease the power of 2 dividing the order of A. To start with, $A^{(p-1) / 2}=A^{2^{s-1} t} \equiv 1 \bmod p$. Check if $A^{(p-1) / 4} \equiv 1 \bmod p$.
If not, then $A^{2^{s-2} t} \equiv-1 \bmod p\left(\right.$ since $\left(A^{2^{s-2} t}\right)^{2} \equiv 1 \bmod p$). So powers of 2 dividing $\operatorname{ord}(A)$ is exactly 2^{s-1}. Same as the power of 2 diving ord $\left(c^{2}\right)=2^{s-1}$. So set $A=A c^{-2}, b=b c \bmod p$. Notice that

$$
\begin{aligned}
\left(A c^{-2}\right)^{2^{s-2} t} & =\frac{A^{2^{s-2} t}}{c^{2 s-1} t} \\
& \equiv(-1)(-1)^{t} \\
& \equiv 1 \quad \bmod p
\end{aligned}
$$

ord $\left(A c^{-2}\right)$ divides $2^{s-2} t$, so power of 2 dividing the order is at most 2^{s-2}, so has decreased by 1 .

If yes, (ie., $A^{2^{s-2} t} \equiv 1 \bmod p$), do nothing.
Next step: check if $A^{2^{s-3} t}=A^{(p-1) / 8} \equiv 1 \bmod p$.
If no, (ie., $A^{2^{s-3} t} \equiv-1 \bmod p$, set $A:=A c^{-4}, b:=b c^{2}\left(c^{4}\right.$ has order $\left.2^{s-2}\right)$. $\left(A c^{-4}\right)^{2^{s-3} t} \equiv 1$.

If yes, do nothing.
After at most s steps we'll reach the stage when $a \equiv A b^{2} \bmod p$ and the power of 2 dividing $\operatorname{ord}(A)$ is 1 - ie., $\operatorname{ord}(A)$ is odd. Now we just compute a square root of A as follows: $\operatorname{ord}(A)$ odd and divides $p-1 \equiv 2^{s} t$, so divides t. So $A^{t} \equiv 1$ $\bmod p(t$ odd $)$. Claim $A^{(t+1) / 2}$ is a square root of $A \bmod p$.

$$
\begin{aligned}
\left(A^{(t+1) / 2}\right)^{2} & =A^{t+1} \\
& =A^{t} A \\
& \equiv 1 \cdot A \\
& \equiv A \quad \bmod p
\end{aligned}
$$

So algorithm just returns $b A^{(t+1) / 2}$ as \sqrt{a}

Eg. If $p \equiv 3 \bmod 4, a$ is quadratic residue $\bmod p$, then a square root of a is $a^{(p+1) / 4}\left(\right.$ square $\left.=a^{(p+1) / 2}=a^{(p-1) / 2} a \equiv a \bmod p\right)$

Efficient poly-log time assuming we can find a quadratic non-residue n efficiently. A random number is quadratic non-residue with probability $\frac{1}{2}$ so if
we run k trials, probability of not getting a quadratic non-residue is $\frac{1}{2}^{k}$ which is $\frac{1}{p^{k}}$ if k is $\log p$. So, this is an efficient randomized algorithm. No efficient deterministic algorithm has yet been found. Simplest is to check all primes, expect quadratic non-residue $\bmod p$ which is less than $c(\log (p))^{2} \Rightarrow$ true if assume ERH.

Question: Pairs of squares problem. How many numbers $x \bmod p$ such that x and $x+1 \bmod p$ are both squares $\bmod p$?

Rough heuristic - if $x, x+1$ were independent, roughly $\frac{p}{4}$ solutions.
Define $(0 \mid p)=0$. Then $\sum_{x \bmod p}(x \mid p)=0$. Also, number of solutions to $y^{2} \equiv x$ $\bmod p$ for fixed x is $1+(x \mid p)$. Also, if $x \not \equiv 0$ then $\frac{1}{2}(1+(x \mid p))$ is 1 if x is a square, 0 if x is not a square.

So, number of x that $x, x+1$ are squares:

$$
\underbrace{1}_{x=0}+\underbrace{\frac{1}{2}(1+(-1 \mid p))}_{x=-1}+\sum_{\substack{x \\ x \neq 0,-1}} \frac{1}{2}(1+(x \mid p)) \frac{1}{2}(1+(x+1 \mid p))
$$

Now

$$
\sum_{\substack{x \\ x \neq 0,-1}} \frac{1}{4}(1+(x \mid p)+(x+1 \mid p)+(x \mid p)(x+1 \mid p))
$$

$$
\begin{aligned}
\frac{1}{4} \sum 1 & =\frac{p-2}{4} \\
\frac{1}{4} \sum(x \mid p) & =\frac{1}{4}\left(\sum_{\text {all }}(x \mid p)-(0 \mid p)-(-1 \mid p)\right) \\
& =-\frac{1}{4}(-1 \mid p) \\
\frac{1}{4} \sum(x+1 \mid p) & =\frac{1}{4}\left(\sum_{\text {all }}(x+1 \mid p)-(1 \mid p)-(0 \mid p)\right) \\
& =-\frac{1}{4} \\
\frac{1}{4} \sum(x \mid p)(x+1 \mid p) & =\frac{1}{4} \sum^{(x \mid p)^{-1}(x+1 \mid p)} \\
& =\frac{1}{4} \sum^{2}\left(\left(\left.\frac{x+1}{x} \right\rvert\, p\right)\right) \\
& =\frac{1}{4} \sum_{x \neq 0,-1}\left(\left(\left.1+\frac{1}{x} \right\rvert\, p\right)\right) \\
& =\frac{1}{4} \sum_{x \neq 0,-1}(x \mid p) \\
& =-\frac{1}{4}
\end{aligned}
$$

Add them up to get

$$
\frac{p+2+(-1 \mid p)}{4}
$$

If we want $x-1, x, x+1$ to all be squares, much more complicated

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

