18.781 Practice Questions for Midterm 2

Note: The actual exam will be shorter (about 10 of these questions), in case you are timing yourself.

1. Find a primitive root modulo $343=7^{3}$.
2. How many solutions are there to $x^{12} \equiv 7(\bmod 19)$? To $x^{12} \equiv 6(\bmod 19)$?
3. Solve the congruence $3 x^{2}+4 x-2 \equiv 0(\bmod 31)$.
4. Characterize all primes p such that 15 is a square modulo p.
5. If n is odd, evaluate the Jacobi symbol $\left(\frac{n^{3}}{n-2}\right)$.
6. If $n=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$, how many squares modulo n are there? How many quadratic residues modulo n are there (i.e. the squares which are coprime to n)?
7. Let $p>3$ be a prime. Show that the number of solutions (x, y) of the congruence $x^{2}+y^{2} \equiv 3$ $(\bmod p)$ is $p-\left(\frac{-1}{p}\right)$.
8. Compute (with justification) the cyclotomic polynomial $\Phi_{12}(x)$.
9. Let $f(n)=(-1)^{n}$. Compute

$$
Z(f, 2)=\sum_{n \geq 1} \frac{f(n)}{n^{2}}
$$

(you may use that $\sum 1 / n^{2}=\pi^{2} / 6$.)
10. For $n=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$, calculate the value of $(U * U * U)(n)$, where U is the arithmetic function such that $U(n)=1$ for all n.
11. Let p be a prime which is $1 \bmod 4$, and suppose $p=a^{2}+b^{2}$ with a odd and positive. Show that $\left(\frac{a}{p}\right)=1$.
12. Let $a_{1}, a_{2}, a_{3}, a_{4}$ be integers. Show that the product $p=\prod_{i<j}\left(a_{i}-a_{j}\right)$ is divisible by 12 .
13. Let the sequence $\left\{a_{n}\right\}$ be given by $a_{0}=0, a_{1}=1$ and for $n \geq 2$,

$$
a_{n}=5 a_{n-1}-6 a_{n-2}
$$

Show that for every prime $p>3$, we have $p \mid a_{p}$.
14. Find a positive integer such that $\mu(n)+\mu(n+1)+\mu(n+2)=3$.
15. Compute the set of integers n for which $\sum_{d \mid n} \mu(d) \phi(d)=0$.
16. Let f be a multiplicative function which is not identically zero. Show that $f(1)=1$.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

