18.781 Practice Questions for Midterm 2

Note: The actual exam will be shorter (about 10 of these questions), in case you are timing yourself.

1. Find a primitive root modulo $343=7^{3}$.

Solution: We start with a primitive root modulo 7, for example 3. The proof of existence of primitive roots modulo p^{2} shows that if g is a primitive root $\bmod p$, then there is exactly one value of $t \bmod p$ such that $g+t p$ is not a primitive root $\bmod p^{2}$, and for this value of t, we will have $(g+t p)^{p-1} \equiv 1\left(\bmod p^{2}\right)$. So we just compute 3^{6} modulo 49 , and see that we get $43 \not \equiv 1(\bmod 49)$. Therefore, 3 is a primitive root modulo 49 . Now the proof of existence of primitive roots modulo p^{e} showed that if we have a primitive root $\bmod p^{2}$, it's also a primitive root $\bmod p^{e}$. So 3 is a primitive root modulo 343 as well.
2. How many solutions are there to $x^{12} \equiv 7(\bmod 19)$? To $x^{12} \equiv 6(\bmod 19)$?

Solution: In general, if $p \nmid a$, the number of solutions to $x^{k} \equiv a(\bmod p)$ can be calculated as follows. Let $d=\operatorname{gcd}(k, p-1)$. Then there are no solutions if $a^{(p-1) / d} \not \equiv 1(\bmod p)$, and there are d solutions if $a^{(p-1) / d} \equiv 1(\bmod p)$. To see this, let g be a primitive root $\bmod p$. Write $a=g^{b}$. Then any x solving the congruence equals g^{m} for some m, and then the congruence says $g^{m k} \equiv g^{b}(\bmod p)$, which is equivalent to $m k \equiv b(\bmod p-1)$, since the order of $g \bmod$ p is $p-1$. Now this is just a linear congruence, and it has exactly 0 or $d=\operatorname{gcd}(k, p-1)$ solutions, according to whether $d \nmid b$ or $d \mid b$. This latter condition is equivalent to whether or not $p-1$ divides $(p-1) b / d$, which is equivalent to whether $1 \equiv g^{(p-1) b / d}=a^{(p-1) / d}(\bmod p)$. For the given examples, compute $7^{18 / 6}=7^{3} \equiv 1(\bmod 19)$, so the first congruence has 6 solutions. On the other hand, $6^{3} \equiv 7(\bmod 19)$, so the second congruence has no solutions.
3. Solve the congruence $3 x^{2}+4 x-2 \equiv 0(\bmod 31)$. Solution: First, we make the congruence monic by inverting $3 \bmod 31$. Noting that $3 \cdot 10=30 \equiv-1(\bmod 31)$, we see that $3^{-1}=-10$. So

$$
x^{2}-40 x+20 \equiv 0 \quad(\bmod 31) .
$$

Next, complete the square to see

$$
(x-20)^{2} \equiv 20^{2}-20=380 \equiv 8 \quad(\bmod 31) .
$$

We need to check whether 8 is a square $\bmod 31$ and also to compute a square root if it is. First, check

$$
\left(\frac{8}{31}\right)=\left(\frac{2}{31}\right)=1 .
$$

To compute a square root, one can use Tonelli's algorithm. Here, it's pretty easy since $31 \equiv 3$ $(\bmod 4)$. So a square root of 8 is

$$
8^{(31+1) / 4}=8^{8}=2^{24} \equiv 16 \quad(\bmod 31) .
$$

So $x \equiv 20 \pm 16(\bmod 31)$. i.e $x \equiv 4,5(\bmod 31)$ are the two solutions.
4. Characterize all primes p such that 15 is a square modulo p.

Solution: Obviously 15 is a square $\bmod 2,3,5$. So suppose $p>5$. We compute the Jacobi symbol

$$
\left(\frac{15}{p}\right)=\left(\frac{3}{p}\right)\left(\frac{5}{p}\right)=(-1)^{(p-1) / 2}\left(\frac{p}{3}\right)\left(\frac{p}{5}\right) .
$$

So the answer will depend on p modulo $4 \cdot 15=60$. Looking at the $\phi(60)=2 \cdot 2 \cdot 4=16$ residue classes mod 60 , we see that the RHS is +1 exactly when

$$
p \equiv \pm 1, \pm 7, \pm 11, \pm 17 \quad(\bmod 60) .
$$

5. If n is odd, evaluate the Jacobi symbol $\left(\frac{n^{3}}{n-2}\right)$.

Solution: Using quadratic reciprocity for the Jacobi symbol (noting that one of n and $n-2$ must be $1 \bmod 4$, we have

$$
\left(\frac{n^{3}}{n-2}\right)=\left(\frac{n}{n-2}\right)=\left(\frac{n-2}{n}\right)=\left(\frac{-2}{n}\right)
$$

which is 1 when $n \equiv 1,3(\bmod 8)$ and -1 when $n \equiv 5,7(\bmod 8)$.
6. If $n=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$, how many squares modulo n are there? How many quadratic residues modulo n are there (i.e. the squares which are coprime to n)?
Solution: For both these questions, we can use the Chinese Remainder theorem. Let's solve the second question first. If p is an odd prime, then there are $(p-1) / 2$ quadratic residues $\bmod p$. For each such quadratic residue a, Hensel's lemma can be applied to $f(x)=x^{2}-a$ to see that a (and anything congruent to $a \bmod p^{e}$) must be a square. Since there are p^{e-1} such lifts for every choice of $a \not \equiv 0(\bmod p)$, we see that the number of quadratic residues $\bmod p^{e}$ is $p^{e-1}(p-1) / 2=p^{e}(1-1 / p) \cdot 1 / 2$. If $p=2$, then we can use the fact that modulo $2,4,8$ there is exactly one quadratic residue (namely 1), and if a is a square $\bmod 8$, then it is a square mod every higher power of 2 (this follows from an extended version of Hensel's lemma). So the number of quadratic residues $\bmod 2^{e}$ is : 1 if $e \leq 3$ and 2^{e-3} if $e>3$. Therefore, the number of quadratic residues $\bmod n=2^{e} \prod p_{i}^{e_{i}}$ is, by CRT, equal to

$$
\max \left(1,2^{e-3}\right) \prod p_{i}^{e_{i}-1}\left(p_{i}-1\right) / 2
$$

Now for the number of squares $\bmod n$. The number of squares will again be a product over all the primes dividing n, of the number of squares mod $p_{i}^{e_{i}}$. Separate out the squares according to what their gcd with p^{e} is; it must be an even power of p. We get the following: if e is even then

$$
p^{e-1} \cdot \frac{p-1}{2}+p^{e-3} \cdot \frac{p-1}{2}+\cdots+p \cdot \frac{p-1}{2}+1
$$

(the last term corresponding to 0 being a square $\bmod p^{e}$). The sum equals

$$
\begin{aligned}
\frac{p^{e-1}(p-1)}{2}\left(1+p^{-2}+\cdots+p^{-2(e / 2-1)}\right)+1 & =\frac{p^{e-1}(p-1)}{2} \cdot \frac{\left(1-p^{-e}\right)}{1-p^{-2}}+1 \\
& =\frac{p\left(p^{e}-1\right)}{2(p+1)}+1=\frac{p\left(p^{e}+1\right)+2}{2(p+1)}
\end{aligned}
$$

Similarly, if e is odd we get

$$
p^{e-1} \cdot \frac{p-1}{2}+p^{e-3} \cdot \frac{p-1}{2}+\cdots+\cdot \frac{p-1}{2}+1=\frac{p^{e+1}+2 p+1}{2(p+1)} .
$$

I'll leave the calculation for when $p=2$ to you. The answer is

$$
\frac{2^{e-1}+4}{3} \text { if } e \text { is even }, \quad \frac{2^{e-1}+5}{3} \text { if } e \text { is odd. }
$$

7. Let $p>3$ be a prime. Show that the number of solutions (x, y) of the congruence $x^{2}+y^{2} \equiv 3$ $(\bmod p)$ is $p-\left(\frac{-1}{p}\right)$.
8. The number of solutions is

$$
\begin{aligned}
\sum_{x=0}^{p-1}\left(\left(\frac{3-x^{2}}{p}\right)+1\right) & =p+\sum_{x=0}^{p-1}\left(\frac{3-x^{2}}{p}\right)=p+\sum_{x=0}^{p-1}\left(\frac{-1}{p}\right)\left(\frac{x^{2}-3}{p}\right) \\
& =p+\left(\frac{-1}{p}\right) \sum_{x=0}^{p-1}\left(\frac{x^{2}-3}{p}\right)
\end{aligned}
$$

We showed on homework that for any $k, \sum\left(\frac{x^{2}+k}{p}\right)=-1$. Therefore the expression above simplifies to $p-\left(\frac{-1}{p}\right)$.
9. Compute (with justification) the cyclotomic polynomial $\Phi_{12}(x)$.

Solution: We start with $x^{12}-1$, factoring it and removing any factors that divide $x^{d}-1$ for proper divisors d of 12 . We have

$$
x^{12}-1=\left(x^{6}-1\right)\left(x^{6}+1\right)
$$

and so we can immediately throw out $x^{6}-1$. Next,

$$
x^{6}+1=\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)
$$

and $x^{2}+1$ is a factor of $x^{4}-1$. So $\Phi_{12}(x)$ must divide $x^{4}-x^{2}+1$. Now since $\phi(12)=4$, we see that equality must hold. So $\Phi_{12}(x)=x^{4}-x^{2}+1$.
10. Let $f(n)=(-1)^{n}$. Compute

$$
Z(f, 2)=\sum_{n \geq 1} \frac{f(n)}{n^{2}}
$$

(you may use that $\sum 1 / n^{2}=\pi^{2} / 6$.)
Solution: We want to know the value of

$$
S=-1+\frac{1}{2^{2}}-\frac{1}{3^{2}}+\frac{1}{4^{2}}-\frac{1}{5^{2}}+\ldots
$$

We already know

$$
\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\ldots
$$

Adding these we get

$$
\begin{aligned}
S+\frac{\pi^{2}}{6} & =2\left(\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\ldots\right) \\
& =2 \cdot \frac{1}{4} \cdot\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots\right) \\
& =2 \cdot \frac{1}{4} \cdot \frac{\pi^{2}}{6}
\end{aligned}
$$

Therefore $S=-\pi^{2} / 12$.
11. For $n=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$, calculate the value of $(U * U * U)(n)$, where U is the arithmetic function such that $U(n)=1$ for all n.
Solution: Since U is multiplicative, so is $U * U * U$. So enough to calculate it for p^{e}. Then we have

$$
(U * U * U)\left(p^{e}\right)=\sum_{d_{1} d_{2} d_{3}=p^{e}} U\left(d_{1}\right) U\left(d_{2}\right) U\left(d_{3}\right)=\sum_{e_{1}+e_{2}+e_{3}=e} 1
$$

since d_{i} can only be a power of p, say $p^{e_{i}}$. So the value of the function is just the number of nonnegative integer solutions of $e_{1}+e_{2}+e_{3}=e$. There are many ways to compute this number. One easy way is: if we fix any e_{1} between 0 and e, the number of possible e_{2} is $e-e_{1}+1$ (since e_{2} can range between 0 and $e-e_{1}$) and then e_{3} is forced to equal $e-e_{1}-e_{2}$. So the total number of solutions is

$$
\sum_{e_{1}=0}^{e}\left(e-e_{1}+1\right)=\sum_{e_{1}=0}^{e}(e+1)-\sum_{e_{1}=0}^{e} e_{1}=(e+1)^{2}-e(e+1) / 2=(e+1)(e+2) / 2
$$

So for $n=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$, by multiplicativity, we have

$$
(U * U * U)(n)=\prod_{i=1}^{r}\left(e_{i}+1\right)\left(e_{i}+2\right) / 2
$$

12. Let p be a prime which is $1 \bmod 4$, and suppose $p=a^{2}+b^{2}$ with a odd and positive. Show that $\left(\frac{a}{p}\right)=1$.
Solution: We have by Quadratic Reciprocity,

$$
\left(\frac{a}{p}\right)=\left(\frac{p}{a}\right)=\left(\frac{a^{2}+b^{2}}{a}\right)=\left(\frac{b^{2}}{a}\right)=1
$$

13. Let $a_{1}, a_{2}, a_{3}, a_{4}$ be integers. Show that the product $p=\prod_{i<j}\left(a_{i}-a_{j}\right)$ is divisible by 12 .

Solution: Enough to show it's divisible by 3 and by 4 . Since there are four integers, and only three residue classes mod 3 , two of them must be congruent mod 3 . Therefore divisibility by 3 follows. For divisibility by 4 , note that the only way no two of them are congruent modulo 4 is if they are all the four distinct classes mod 4 , namely $0,1,2,3$. But then $0-2$ and $1-3$ are both divisible by 2 , which makes the product divisible by $2^{2}=4$.
14. Let the sequence $\left\{a_{n}\right\}$ be given by $a_{0}=0, a_{1}=1$ and for $n \geq 2$,

$$
a_{n}=5 a_{n-1}-6 a_{n-2} .
$$

Show that for every prime $p>3$, we have $p \mid a_{p-1}$.
Solution: The characteristic polynomial is $T^{2}-5 T+6=(T-2)(T-3)$. So we must have $a_{n}=A \cdot 3^{n}+B \cdot 2^{n}$ for some A, B. Plugging in $n=0,1$ we get $A=1, B=-1$. So $a_{n}=3^{n}-2^{n}$. Now by Fermat, if $p>3$ then $2^{p-1} \equiv 1 \equiv 3^{p-1}(\bmod p)$, so $a_{p-1} \equiv 0(\bmod p)$.
15. Find a positive integer such that $\mu(n)+\mu(n+1)+\mu(n+2)=3$.

Solution: We know $\mu(n)= \pm 1$ if n is squarefree, and 0 otherwise. The only way we could have the equation holding is if $\mu(n)=\mu(n+1)=\mu(n+2)=1$. That is, $n, n+1, n+2$ are all squarefree and products of an even number of primes. In particular, n must be $1 \bmod 4$ (else 4 will divide one of these numbers). Trying the first few values, we see that $n=33$ is the smallest value which works.
16. Compute the set of integers n for which $\sum_{d \mid n} \mu(d) \phi(d)=0$.

Solution: Since $\mu(n) \phi(n)$ is a multiplicative function of n, so is

$$
f(n)=\sum_{d \mid n} \mu(d) \phi(d) .
$$

Let's compute what it is on prime powers. We have $f(1)=1$, and for $e \geq 1, f\left(p^{e}\right)=$ $\phi(1)-\phi(p)=2-p$. Therefore, for $n=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$, we have $f(n)=\prod\left(2-p_{i}\right)$. Therefore $f(n)=0$ iff one of the p_{i} is 2, i.e. iff n is even.
17. Let f be a multiplicative function which is not identically zero. Show that $f(1)=1$.

Solution: We have $f(1)=f\left(1^{2}\right)=f(1) f(1)$, so $f(1)(f(1)-1)=0$. If $f(1) \neq 1$, this forces $f(1)=0$. Then $f(n)=f(n \cdot 1)=f(n) f(1)=f(n) \cdot 0=0$ for all n, so f is identically 0 . We used that 1 is coprime to all integers.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

