
18.781 Practice Questions for Midterm 2

Note: The actual exam will be shorter (about 10 of these questions), in case you are timing yourself.

1. Find a primitive root modulo 343 = 73.

Solution: We start with a primitive root modulo 7, for example 3. The proof of existence of
primitive roots modulo p2 shows that if g is a primitive root mod p, then there is exactly one
value of t mod p such that g + tp is not a primitive root mod p2, and for this value of t, we
will have (g + tp)p−1 ≡ 1 (mod p2). So we just compute 36 modulo 49, and see that we get
43 ≡ 1 (mod 49). Therefore, 3 is a primitive root modulo 49. Now the proof of existence of
primitive roots modulo pe showed that if we have a primitive root mod p2, it’s also a primitive
root mod pe. So 3 is a primitive root modulo 343 as well.

2. How many solutions are there to x12 ≡ 7 (mod 19)? To x12 ≡ 6 (mod 19)?

Solution: In general, if p � a, the number of solutions to xk ≡ a (mod p) can be calculated as
follows. Let d = gcd(k, p− 1). Then there are no solutions if a(p−1)/d ≡ 1 (mod p), and there
are d solutions if a(p−1)/d ≡ 1 (mod p). To see this, let g be a primitive root mod p. Write
a = gb. Then any x solving the congruence equals gm for some m, and then the congruence
says gmk ≡ gb (mod p), which is equivalent to mk ≡ b (mod p− 1), since the order of g mod
p is p − 1. Now this is just a linear congruence, and it has exactly 0 or d = gcd(k, p − 1)
solutions, according to whether d � b or d|b. This latter condition is equivalent to whether or
not p− 1 divides (p− 1)b/d, which is equivalent to whether 1 ≡ g(p−1)b/d = a(p−1)/d (mod p).

For the given examples, compute 718/6 = 73 ≡ 1 (mod 19), so the first congruence has 6
solutions. On the other hand, 63 ≡ 7 (mod 19), so the second congruence has no solutions.

3. Solve the congruence 3x2 + 4x − 2 ≡ 0 (mod 31). Solution: First, we make the congruence
monic by inverting 3 mod 31. Noting that 3 ·10 = 30 ≡ −1 (mod 31), we see that 3−1 = −10.
So

x2 − 40x + 20 ≡ 0 (mod 31).

Next, complete the square to see

(x − 20)2 ≡ 202 − 20 = 380 ≡ 8 (mod 31).

We need to check whether 8 is a square mod 31 and also to compute a square root if it is.
First, check (

8
)

2
= = 1

31

(
31

)
.

To compute a square root, one can use Tonelli’s algorithm. Here, it’s pretty easy since 31 ≡ 3
(mod 4). So a square root of 8 is

8(31+1)/4 = 88 = 224 ≡ 16 (mod 31).

So x ≡ 20 ± 16 (mod 31). i.e x ≡ 4, 5 (mod 31) are the two solutions.
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4. Characterize all primes p such that 15 is a square modulo p.

Solution: Obviously 15 is a square mod 2, 3, 5. So suppose p > 5. We compute the Jacobi
symbol (

15 3 5
= −1)/2 p p

= (−1)(p .
p

) (
p

)(
p

) (
3

)(
5

)

So the answer will depend on p modulo 4 · 15 = 60. Looking at the φ(60) = 2 · 2 · 4 = 16
residue classes mod 60, we see that the RHS is +1 exactly when

p ≡ ±1,±7,±11,±17 (mod 60).
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5. If n is odd, evaluate the Jacobi symbol
(

n
n−2

)
.

Solution: Using quadratic reciprocity for the Jacobi symbol (noting that one of n and n− 2
must be 1 mod 4, we have(

n3

n − 2

)
n

=

(
n − 2

)
=

(
n − 2

n

)
=

(
−2

n

)

which is 1 when n ≡ 1, 3 (mod 8) and −1 when n ≡ 5, 7 (mod 8).

6. If n = pe1

1 . . . per

r , how many squares modulo n are there? How many quadratic residues
modulo n are there (i.e. the squares which are coprime to n)?

Solution: For both these questions, we can use the Chinese Remainder theorem. Let’s solve
the second question first. If p is an odd prime, then there are (p − 1)/2 quadratic residues
mod p. For each such quadratic residue a, Hensel’s lemma can be applied to f(x) = x2 −a to
see that a (and anything congruent to a mod pe) must be a square. Since there are pe−1 such
lifts for every choice of a ≡ 0 (mod p), we see that the number of quadratic residues mod pe

is pe−1(p−1)/2 = pe(1−1/p) ·1/2. If p = 2, then we can use the fact that modulo 2, 4, 8 there
is exactly one quadratic residue (namely 1), and if a is a square mod 8, then it is a square
mod every higher power of 2 (this follows from an extended version of Hensel’s lemma). So
the number of quadratic residues mod 2e is : 1 if e ≤ 3 and 2e−3 if e > 3. Therefore, the

enumber of quadratic residues mod n = 2e
∏

p i

i is, by CRT, equal to

max(1, 2e−3)
∏

pei−1
i (pi − 1)/2.

Now for the number of squares mod n. The number of squares will again be a product over all
ethe primes dividing n, of the number of squares mod p i

i . Separate out the squares according
to what their gcd with pe is; it must be an even power of p. We get the following: if e is even
then

e−1 p − 1 p
p · + pe−3 − 1 p − 1

· + · · · + p · + 1
2 2 2

(the last term corresponding to 0 being a square mod pe). The sum equals

pe−1(p − 1) 1
−2 −1) pe−

−2(e/2 (p − 1) (1 − p−e)
(1 + p + · · · + p ) + 1 = · + 1

2 2 1 − p−2

p(pe − 1) p(pe + 1) + 2
= + 1 = .

2(p + 1) 2(p + 1)
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Similarly, if e is odd we get

e−1 p − 1 p +1

p · + pe−3 − 1 p − 1 pe + 2p + 1
· + · · · + · + 1 = .

2 2 2 2(p + 1)

I’ll leave the calculation for when p = 2 to you. The answer is

2e−1 + 4 2e−1 + 5
if e is even , if e is odd.
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7. Let p > 3 be a prime. Show that the number of solutions (x, y) of the congruence x2 + y2 ≡ 3

(mod p) is p −
(
−1
p

)
.

8. The number of solutions is

p−1 p−∑((
3 − x2

) ) 1 ( p∑ 3 − x2
) −1∑ (

−1
)(

x2 − 3
+ 1 = p + = p +

p p p p
x=0 x=0 x=0

)

( p−1
−1 ∑ x

= p +

) 2

p
x=0

(
− 3

p

)

We showed on homework that for any k,

−1

∑(
x2+k

)
= −1. Therefore the expression abovep

simplifies to p −
(

p

)
.

9. Compute (with justification) the cyclotomic polynomial Φ12(x).

Solution: We start with x12 − 1, factoring it and removing any factors that divide xd − 1
for proper divisors d of 12. We have

x12 − 1 = (x6 − 1)(x6 + 1)

and so we can immediately throw out x6 − 1. Next,

x6 + 1 = (x2 + 1)(x4 − x2 + 1)

and x2 + 1 is a factor of x4 − 1. So Φ12(x) must divide x4 − x2 + 1. Now since φ(12) = 4, we
see that equality must hold. So Φ12(x) = x4 − x2 + 1.

10. Let f(n) = (−1)n. Compute
f(n)

Z(f, 2) = .
n

n

∑
2

≥1

(you may use that
∑

1/n2 = π2/6.)

Solution: We want to know the value of

1 1 1 1
S = −1 + − + − + . . .

22 32 42 52

3



We already know
π2 1 1 1 1

= 1 + + + + + . . .
6 22 32 42 52

Adding these we get

π2

S + = 2
6

(
1 1 1

+ + + . . .
22 42 62

)

1 1 1 1
= 2 · · +

4

(
+ + . . .

12 22 32

)

1 π2

= 2 · · .
4 6

Therefore S = −π2/12.

11. For n = pe1

1 . . . per

r , calculate the value of (U ∗ U ∗ U)(n), where U is the arithmetic function
such that U(n) = 1 for all n.

Solution: Since U is multiplicative, so is U ∗ U ∗ U . So enough to calculate it for pe. Then
we have

(U ∗ U ∗ U)(pe) =
∑

U(d1)U(d2)U(d3) =
d d d = e
1 2 3 p e1+e

∑
1

2+e3=e

since di can only be a power of p, say pei . So the value of the function is just the number
of nonnegative integer solutions of e1 + e2 + e3 = e. There are many ways to compute this
number. One easy way is: if we fix any e1 between 0 and e, the number of possible e2 is
e− e1 + 1 (since e2 can range between 0 and e− e1) and then e3 is forced to equal e− e1 − e2.
So the total number of solutions is

e e e∑
(e − e1 + 1) = (e + 1) − e1 = (e + 1)2 − e(e + 1)/2 = (e + 1)(e + 2)/2.

e1=0 e

∑
1=0 e

∑
1=0

So for n = pe1

1 . . . per

r , by multiplicativity, we have

r

(U ∗ U ∗ U)(n) =
∏

(ei + 1)(ei + 2)/2.
i=1

12. Let p be a prime which is 1 mod 4, and suppose p = a2 + b2 with a odd and positive. Show

that

Solution:

(
a
p

)
= 1.

We have by Quadratic Reciprocity,(
a

p

)
=

(p

a

)
=

(
a2 + b2

a

)
=

(
b2

a

)
= 1.

13. Let a1, a2, a3, a4 be integers. Show that the product p = i<j(ai − aj) is divisible by 12.

Solution: Enough to show it’s divisible by 3 and by 4. Sin

∏
ce there are four integers, and only

three residue classes mod 3, two of them must be congruent mod 3. Therefore divisibility by
3 follows. For divisibility by 4, note that the only way no two of them are congruent modulo
4 is if they are all the four distinct classes mod 4, namely 0, 1, 2, 3. But then 0 − 2 and 1 − 3
are both divisible by 2, which makes the product divisible by 22 = 4.
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14. Let the sequence {an} be given by a0 = 0, a1 = 1 and for n ≥ 2,

an = 5an−1 − 6an−2.

Show that for every prime p > 3, we have p | ap−1.

Solution: The characteristic polynomial is T 2 − 5T + 6 = (T − 2)(T − 3). So we must
have an = A · 3n + B · 2n for some A,B. Plugging in n = 0, 1 we get A = 1, B = −1. So
an = 3n − 2n. Now by Fermat, if p > 3 then 2p−1 ≡ 1 ≡ 3p−1 (mod p), so ap−1 ≡ 0 (mod p).

15. Find a positive integer such that μ(n) + μ(n + 1) + μ(n + 2) = 3.

Solution: We know μ(n) = ±1 if n is squarefree, and 0 otherwise. The only way we could
have the equation holding is if μ(n) = μ(n + 1) = μ(n + 2) = 1. That is, n, n + 1, n + 2 are
all squarefree and products of an even number of primes. In particular, n must be 1 mod 4
(else 4 will divide one of these numbers). Trying the first few values, we see that n = 33 is
the smallest value which works.

16. Compute the set of integers n for which
d

∑
μ(d)φ(d) = 0.

|n

Solution: Since μ(n)φ(n) is a multiplicative function of n, so is

f(n) =
∑

μ(d)φ(d).

d|n

Let’s compute what it is on prime powers. We have f(1) = 1, and for e ≥ 1, f(pe) =
φ(1) − φ(p) = 2 − p. Therefore, for n = pe1

1 . . . per

r , we have f(n) = (2 − pi). Therefore
f(n) = 0 iff one of the pi is 2, i.e. iff n is even.

∏

17. Let f be a multiplicative function which is not identically zero. Show that f(1) = 1.

Solution: We have f(1) = f(12) = f(1)f(1), so f(1)(f(1) − 1) = 0. If f(1) = 1, this forces
f(1) = 0. Then f(n) = f(n · 1) = f(n)f(1) = f(n) · 0 = 0 for all n, so f is identically 0. We
used that 1 is coprime to all integers.
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