Practice problems for Midterm 1

Note: this is not a representative exam (it has way more problems). The midterm will probably have about 7 or 8 problems. See the guidelines for further info.

1. Find the gcd of 621 and 483.
2. Find a solution of $621 m+483 n=k$, where k is the gcd of 621 and 483 .
3. Calculate 3^{64} modulo 67 by repeated squaring.
4. Calculate 3^{64} modulo 67 using Fermat's little theorem.
5. Calculate $\phi(576)$.
6. Find all the solutions of $x^{3}-x+1 \equiv 0(\bmod 25)$.
7. Find all solutions of $x^{3}-x+1 \equiv 0(\bmod 35)$.
8. Find the smallest integer N such that $\phi(n) \geq 5$ for all $n \geq N$.
9. Find two positive integers m, n such that $\phi(m n) \neq \phi(m) \phi(n)$.
10. True or false: two positive integers m, n are coprime if and only if $\phi(m n)=\phi(m) \phi(n)$. Give a proof or counterexample.
11. Give the definition of a reduced residue system modulo n.
12. State and prove the Chinese remainder theorem.
13. Show that $(n-1)!\equiv 0(\bmod n)$ for composite n. [Hint: Make sure that your proof works for the case $n=p^{2}$, where p is a prime].
14. Solve the system of congruences

$$
\begin{array}{ll}
x \equiv 1 & (\bmod 3) \\
x \equiv 2 & (\bmod 5) \\
x \equiv 3 & (\bmod 7)
\end{array}
$$

15. Let n be a positive integer. Show the identity

$$
\sum_{i=1}^{n} i\binom{n}{i}=n 2^{n-1}
$$

[Hint: differentiate both sides of the Binomial theorem, or manipulate the binomial coefficients.]
16. Calculate the order of 3 modulo 301.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

