18.781: Solution to Practice Questions for Final Exam

1. Find three solutions in positive integers of $\left|x^{2}-6 y^{2}\right|=1$ by first calculating the continued fraction expansion of $\sqrt{6}$.

Solution: We have

$$
\begin{aligned}
\sqrt{6} & =\left[2, \frac{1}{\sqrt{6}-2}\right] \\
& =\left[2, \frac{\sqrt{6}+2}{2}\right] \\
& =\left[2,2, \frac{1}{\frac{\sqrt{6}-2}{2}}\right]=\left[2,2, \frac{2}{\sqrt{6}-2}\right]=[2,2, \sqrt{6}+2] \\
& =\left[2,2,4, \frac{1}{\sqrt{6}-2}\right] \\
& =[2,2,4,2,4,2,4, \ldots]=[2, \overline{2,4}] .
\end{aligned}
$$

Therefore, looking at $[2,2]$ we get $5 / 2$, which leads to $5^{2}-6 \cdot 2^{2}=1$. Therefore $(5,2)$ is a solution. To get two more we compute

$$
\begin{aligned}
& (5+2 \sqrt{6})^{2}=49+20 \sqrt{6} \\
& (5+2 \sqrt{6})^{3}=(5+2 \sqrt{6}) \cdot(49+20 \sqrt{6})=485+198 \sqrt{6} .
\end{aligned}
$$

Therefore $(5,2),(49,20)$ and $(485,198)$ are three solutions. Note that since the length of the period is 2 (even) there are no solutions to $x^{2}-6 y^{2}=-1$.
2. If $\theta_{1}=\left[3,1,5,9, a_{1}, a_{2}, \ldots\right]$ and $\theta_{2}=\left[3,1,5,7, b_{1}, b_{2}, \ldots\right]$, show that $\left|\theta_{1}-\theta_{2}\right|<49 / 7095$.

Solution: Let $\theta=[3,1,5]=23 / 6$. Then computing the next convergent to $[3,1,5,9]=$ $211 / 56$, we see that $\left|\theta_{1}-\theta\right|<1 /(6 \cdot 55)$. Similarly $\left|\theta_{2}-\theta\right|<1 /(6 \cdot 43)$. So by the triangle inequality

$$
\left|\theta_{1}-\theta_{2}\right| \leq\left|\theta_{1}-\theta\right|+\left|\theta-\theta_{2}\right|<1 /(6 \cdot 55)+1 /(6 \cdot 43)=49 / 7095 .
$$

Note: once you compute $[3,1]=4 / 1$ and $[3,1,5]=23 / 6$, you can be a bit lazy and not compute say $[3,1,5,9]$, since you're only interested in $q_{3}=a_{3} q_{2}+q_{1}=9 \cdot 6+1=55$. Similarly for $[3,1,5,7]$.
3. For $n=1728$, figure out the number of positive divisors of n, and the sum of its positive divisors.

Solution: $n=2^{6} 3^{3}$, so $d(n)=(6+1)(3+1)=28$, and

$$
\sigma(n)=\frac{2^{7}-1}{2-1} \cdot \frac{3^{4}-1}{3-1}=127 \cdot 40=5080 .
$$

4. Use multiplicativity to calculate the sum

$$
\sum_{d \mid 2592} \frac{\phi(d)}{d} .
$$

Solution: Since $f(n)=\phi(n) / n$ is a multiplicative function of n, so is

$$
g=U * f=\sum_{d \mid n} \frac{\phi(d)}{d} .
$$

So we need to figure out what it is on prime powers. We have $g(1)=1$ and for $e \geq 1$,

$$
g\left(p^{e}\right)=1+\frac{p-1}{p}+\frac{p(p-1)}{p^{2}}+\cdots+\frac{p^{e-1}(p-1)}{p-1}=1+e\left(1-\frac{1}{p}\right) .
$$

Now $2592=2^{5} 3^{4}$. We have $g\left(2^{5}\right)=1+5 / 2=7 / 2$ and $g\left(3^{4}\right)=1+8 / 3=11 / 3$. So $g(n)=77 / 6$.
5. Prove that if a prime $p>3$ divides $n^{2}-n+1$ for an integer n, then $p \equiv 1(\bmod 6)$. (the original problem should have said $p>3$)
Solution: We have $n^{2}-n+1 \equiv 0(\bmod p)$. So $4 n^{2}-4 n+4 \equiv 0(\bmod p)$. That is, $(2 n-1)^{2} \equiv-3(\bmod p)$. So -3 is a quadratic residue $\bmod p(\operatorname{since} \operatorname{gcd}(3, p)=1)$. This forces $p \equiv 1(\bmod 3)$, since

$$
1=\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)=(-1)^{(p-1) / 2}(-1)^{(p-1) / 2}\left(\frac{p}{3}\right)=\left(\frac{p}{3}\right),
$$

and the last expression is +1 if $p \equiv 1(\bmod 3)$ and -1 if $p \equiv 2(\bmod 3)$.
6. Compute the value of the infinite periodic fraction $\langle 12, \overline{24}\rangle$. Find the smallest positive (i.e. both $x, y>0$) solution of $x^{2}-145 y^{2}=1$.
Solution: Let $y=[\overline{24}]=24+1 / y$. Then $y^{2}-24 y-1=0$, so $y=12+\sqrt{145}$ (plus sign because $y>0)$. Therefore $x=[12, \overline{24}]=12+1 / y=12+1 /(12+\sqrt{145})=12+\sqrt{145}-12=\sqrt{145}$.
The period is odd. Therefore the smallest positive solution to the Brahmagupta-Pell equation will come from $[12,24]=12+12 / 24=289 / 24$, and it is $(289,24)$. Note that $[12]=12 / 1$ will give $12^{2}-145 \cdot 1^{2}=-1$.
7. Determine whether there is a nontrivial integer solution of the equation

$$
49 x^{2}+5 y^{2}+38 z^{2}-28 x y+70 x z-28 y z=0
$$

Solution: Let's simplify the conic. It's expeditious to first scale x by $1 / 7$, gettting

$$
x^{2}+5 y^{2}+38 z^{2}-4 x y+10 x z-28 y z=(x-2 y+5 z)^{2}+y^{2}+13 z^{2}-8 y z .
$$

Therefore replacing calling $(x-2 y+5 z)$ our new variable x, we get

$$
x^{2}+y^{2}+13 z^{2}-8 y z=x^{2}+(y-4 z)^{2}-3 z^{2} .
$$

So we end up with

$$
x^{2}+y^{2}-3 z^{2}
$$

which is already nice and squarefree. By Legendre's theorem, we just need to verify whether the local conditions are satisfied. The coefficients $1,1,-3$ don't all have the same sign, so that one's ok. We also need to check that -1 is a square mod 3 , which is not ok. So the original conic doesn't have any nontrivial rational or integer points.
8. Find a Pythagorean triangle such that the difference of the two (shorter) sides is 1 , and every side is at least 100.
Solution: Suppose that the sides are $r^{2}-s^{2}, 2 r s, r^{2}+s^{2}$. (In general, they will be some common multiple of these, but the fact that the difference of two of the sides is 1 , and positivity of the sides, forces that multiple to be 1 anyway). So we need $\left|r^{2}-s^{2}-2 r s\right|=1$, i.e. $\left|(r-s)^{2}-2 s^{2}\right|=1$. Let $x=r-s$ and $y=s$, then this is just a Brahmagupta-Pell type equation

$$
x^{2}-2 y^{2}= \pm 1 .
$$

We want a solution such that $s=y$ and $r=x+y$ are both positive, and such that $\min \left(2 r s, r^{2}-\right.$ s^{2}) is larger than 100 . The continued fraction of $\sqrt{2}$ is $[1, \overline{2}]$. So the smallest positive solution comes from $[1]=1 / 1$, i.e. is $(x, y)=(1,1)$ (which we could have guessed anyway, without using continued fractions). Now $1^{2}-2 \cdot 1^{2}=-1$. To get all solutions, we just have to look at the rational and irrational parts of $(1+\sqrt{2})^{n}$. The smallest one which works is $(1+\sqrt{2})^{3}=7+5 \sqrt{2}$. So we get $(r, s)=(12,5)$. So the Pythagorean triangle is $(119,120,169)$.
9. Show that $x^{2}+2 y^{2}=8 z+5$ has no integral solution.

Solution: Looking mod 8 , we see that we have $x^{2}+2 y^{2} \equiv 5(\bmod 8)$. Now, further looking $\bmod 2$ we see x must be odd. So $x^{2} \equiv 1(\bmod 8)$, which forces $2 y^{2} \equiv 4(\bmod 8)$. This is impossible, since if y is even, then $2 y^{2} \equiv 0(\bmod 8)$, and if y is odd, then $2 y^{2} \equiv 2(\bmod 8)$.
10. Define a sequence by $a_{0}=2, a_{1}=5$ and $a_{n}=5 a_{n-1}-4 a_{n-2}$ for $n \geq 2$. Show that $a_{n} a_{n+2}-a_{n+1}^{2}$ is a square for every $n \geq 0$.
Solution: The characteristic polynomial is $T^{2}-5 T+4=(T-1)(T-4)$. So we must have $a_{n}=A \cdot 4^{n}+B \cdot 1^{n}$. Subsituting in $n=0$ and 1 , we get $a_{n}=4^{n}+1$. So

$$
\begin{aligned}
a_{n} a_{n+2}-a_{n+1}^{2} & =\left(4^{n}+1\right)\left(4^{n+2}+1\right)-\left(4^{n+1}+1\right)^{2} \\
& =4^{n+2}+4^{n}-2 \cdot 4^{n+1} \\
& =4^{n}(16+1-2 \cdot 4)=9 \cdot 4^{n}=\left(2 \cdot 3^{n}\right)^{2}
\end{aligned}
$$

which is a perfect square.
11. Let $p \nmid a b$. Show that $a x^{2}+b y^{2} \equiv c(\bmod p)$ has a solution.

Solution: Consider the $(p+1) / 2$ number $a x^{2}$ for $x=0, \ldots,(p-1) / 2$. These are all distinct modulo p. Similarly, the $(p+1) / 2$ numbers $c-b y^{2}$ are also all distinct modulo p. Since we now have $p+1$ numbers in all, and only p residue classes $\bmod p$, by the Pigeonhole principle, two of these must be congruent $\bmod p$. Therefore we must have $a x^{2} \equiv c-b y^{2}(\bmod p)$ for some x, y. Therefore the congruence has a solution.
12. How many solutions are there to $x^{2}+3 x+18 \equiv 0(\bmod 28)$? Find all of them.

Solution: We need to figure out the number of solutions $\bmod 4$ and $\bmod 7$, and multiply. Modulo 4 we have $x^{2}+3 x+2 \equiv(x+1)(x+2)(\bmod 4)$. It's easy to see this has the solutions $x \equiv-1,-2(\bmod 4)$.

Note: one must be very careful when dealing with congruences modulo prime powers. It's not necessarily true that if you have a product of (e.g. linear) factors, that the product will
be zero $\bmod p^{e}$ iff one of them is. For example, $x(x+2) \equiv 0(\bmod 8)$ has more than the two solutions $x \equiv 0,-2$; in fact, any even number x will make $x(x+2)$ vanish mod 8 , so there are 4 solutions mod 8. If p^{e} is small enough, the best strategy is probably just to run over all the congruence classes and check. On the other hand, if you're working mod a prime (i.e. $e=1$) then you can separate out factors.
Modulo 7 we have $x^{3}+3 x+18 \equiv x^{2}-4 x+4=(x-2)^{2} \equiv 0(\bmod 7)$. So just one solution $x \equiv 2(\bmod 7)$. So the total number of solutions $\bmod 28$ is $2 \cdot 1=2$. To find them, we need the linear combination

$$
2 \cdot 4+(-1) \cdot 7=1
$$

Then to combine -1 and 2 we have $(-1) \cdot(-1) \cdot 7+2 \cdot 2 \cdot 4=23$. To combine -2 and 2 we have $(-2) \cdot(-1) \cdot 7+2 \cdot 2 \cdot 4=30 \equiv 2(\bmod 28)$. So the two solutions $\bmod 28$ are 2 and 23 .
13. Let a, m be positive integers, not necessarily coprime. Show that $a^{m} \equiv a^{m-\phi(m)}(\bmod m)$.

Solution: Write $m=\prod p_{i}^{e_{i}}$. Enough to prove that

$$
a^{m} \equiv a^{m-\phi(m)} \quad\left(\bmod p_{i}^{e_{i}}\right)
$$

for every i. If $p_{i} \nmid a$ then by Euler

$$
a^{\phi\left(p_{i}^{e_{i}}\right)} \equiv 1 \quad\left(\bmod p_{i}^{e_{i}}\right)
$$

Since $\phi\left(p_{i}^{e_{i}}\right)$ divides $\phi(m)=\prod \phi\left(p_{i}^{e_{i}}\right)$, we get that

$$
a^{\phi(m)} \equiv 1 \quad\left(\bmod p_{i}^{e_{i}}\right)
$$

and then by multiplying by $a^{m-\phi(m)}$, we get the desired congruence. On the other hand, if $p_{i} \mid a$, then the left and right sides of the congruence we wish to prove will be divisible by p_{i}^{m} and $p_{i}^{m-\phi(m)}$ respectively. If we prove that both the exponents are at least e_{i}, then both sides will be congruent to 0 modulo $p_{i}^{e_{i}}$, and we'll be done. It's obviously enough to prove $m-\phi(m) \geq e_{i}$, since $m \geq m-\phi(m)$. We'll assume $m>1$, since if $m=1$ there are no primes dividing it, and nothing to prove. Now note that $m>\phi(m)$ (since $\phi(m)$ is the number of integers in $\{1, \ldots, m\}$ coprime to m, and there's at least one which is not coprime to m, namely m). Also, since $p_{i}^{e_{i}} \mid m$, remembering that $\phi(m)=p_{i}^{e_{i}-1}$ times other stuff, we see that $p_{i}^{e_{i}-1}$ divides $m-\phi(m)$. So $m-\phi(m) \geq p_{i}^{e_{i}-1} \geq 2^{e_{i}-1} \geq e_{i}$ whenever $e_{i} \geq 1$. (It's an easy exercise to prove by induction that $2^{e-1} \geq e$ for any $e \in \mathbb{N}$.)
14. Parametrize all the rational points on the curve $x^{2}-3 y^{2}=1$.

Solution: We find one trivial point $(1,0)$. So write $y=m(x-1)$ and plug it in, to get

$$
x^{2}-3 m^{2}(x-1)^{2}=1
$$

So

$$
(x-1)(x+1)=3 m^{2}(x-1)^{2}
$$

Cancelling a factor of $(x-1)$, we get

$$
x+1=3 m^{2}(x-1)
$$

So $x=\left(3 m^{2}+1\right) /\left(3 m^{2}-1\right)$ and then $y=m(x-1)=2 m /\left(3 m^{2}-1\right)$. This parametrizes all rational points on the conic (except for the original point $(1,0)$, which is obtained as a limit when $m \rightarrow \infty$).
15. Find an integer solution of $37 x+41 y=-3$.

Solution: We run the Euclidean algorithm on 37 and 41 to get

	1	0	41
	0	1	37
-1	1	-1	4
-9	-9	10	1

So $(-9) \cdot 41+10 \cdot 37=1$.
16. Show that if $n>1$ then $n \nmid 2^{n}-1$. (Hint: consider the smallest prime dividing n).

Solution: By contradiction. Suppose $n \mid 2^{n}-1$. Let p be the smallest prime dividing n. Then $p \mid 2^{n}-1$. So the order of $2 \bmod p$ divides n. But it also divides $p-1$. So the order h of 2 $\bmod p$ is less than p and divides n, and so are the primes dividing h. Since there's no prime smaller than p which divides n, the order must be 1 . So $2^{1} \equiv 1(\bmod p)$, which is impossible.
17. Let $p \geq 11$ be prime. Show that for some $n \in\{1, \ldots, 9\}$, both n and $n+1$ are quadratic residues.
If either 2 or 5 is a quadratic residue $\bmod p$, we're done, considering the pairs $(1,2)$ and $(4,5)$, since 1 and 4 are squares and therefore quadratic residues. If both 2 and 5 are quadratic nonresidues, then 10 is a quadratic residue. So $(9,10)$ does the job.
18. Show that if $23 a^{2} \equiv b^{2}(\bmod 17)$ then $23 a^{2} \equiv b^{2}(\bmod 289)$.

Solution: We calculate

$$
\left(\frac{23}{17}\right)=\left(\frac{6}{17}\right)=\left(\frac{3}{17}\right)=\left(\frac{17}{3}\right)=\left(\frac{2}{3}\right)=-1 .
$$

So if $23 a^{2} \equiv b^{2}(\bmod 17)$ then we claim $17 \mid a$, else we would have

$$
23 \equiv\left(b a^{-1}\right)^{2} \quad(\bmod 17)
$$

which is a contradiction to the above calculation. So $17^{2} \mid 23 a^{2}=b^{2}$ and so $17 \mid b$. Then $17^{2} \mid 23 a^{2}-b^{2}$, so $23 a^{2} \equiv b^{2}(\bmod 289)$.
19. Calculate the product $\prod_{\alpha}(2-\alpha)$, where α runs over the primitive 14 'th roots of unity.

Solution: We compute the cyclotomic polynomial $\Phi_{14}(x)$ noting that it must have degree $\phi(14)=6$.

$$
x^{14}-1=\left(x^{7}-1\right)\left(x^{7}+1\right) .
$$

Throwing out $x^{7}-1$, we have

$$
x^{7}+1=(x+1)\left(x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\right)
$$

$$
\Phi_{14}(x)=x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 .
$$

Note that $\Phi_{14}(x)=\prod_{\alpha}(x-\alpha)$, where α runs over the primitive 14 'th roots of unity. Substituting $x=2$ in, we get

$$
\prod_{\alpha}(2-\alpha)=2^{6}-2^{5}+2^{4}-2^{3}+2^{2}-2+1=43 .
$$

20. Let f be a multiplicative function with $f(1)=1$, and let f^{-1} be its inverse for Dirichlet convolution. Show that f^{-1} is multiplicative as well, and that for squarefree n, we have $f^{-1}(n)=\mu(n) f(n)$.
Solution: The inverse f^{-1} is defined by $f * f^{-1}=\mathbf{1}$, and it exists as long as $f(1) \neq 0$, as we showed on a problem set. To show it's multiplicative, we will define a function g which will be multiplicative by definition, and show that $f * g=1$. Then it will follow that $f^{-1}=g$. So let $g(1)=1$, and define g on prime powers p^{e} by induction on $e \geq 1$ by letting

$$
\begin{aligned}
\mathbf{1}\left(p^{e}\right)=0 & =(f * g)\left(p^{e}\right)=f(1) g\left(p^{e}\right)+f(p) g\left(p^{e-1}\right)+\ldots f\left(p^{e-1}\right) g(e)+f\left(p^{e}\right) g(1) \\
& =g\left(p^{e}\right)+f(p) g\left(p^{e-1}\right)+\ldots f\left(p^{e-1}\right) g(e)+f\left(p^{e}\right) g(1) .
\end{aligned}
$$

Since $g(1), \ldots, g\left(p^{e-1}\right)$ have been defined by the induction hypothesis, we can solve this uniquely for $g\left(p^{e}\right)$. Then for $n=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$, define $g(n)=\prod g\left(p_{i}^{e_{i}}\right)$. By construction, g is multiplicative. Therefore so is $g * f$. By construction $(g * f)(1)=1$ and $(g * f)\left(p^{e}\right)=0$ for $e \geq 1$. So $(g * f)(n)=0$ for $n \geq 1$ by multiplicativity. That is, $g * f=1$. Therefore g is the multiplicative inverse of f. Note that there is a unique multiplicative inverse, since if g^{\prime} were another inverse, then

$$
g=g * \mathbf{1}=g *\left(f * g^{\prime}\right)=(g * f) * g^{\prime}=\mathbf{1} * g^{\prime}=g^{\prime} .
$$

Finally, we need to show $g(n)=\mu(n) f(n)$ for n squarefree. By multiplicativity of g, μ and f, it's enough to show this when $n=p$, a prime (it's clearly true for $n=1$). But then $g(p)$ is defined by

$$
0=g(p)+f(p) g(1)=g(p)+f(p) .
$$

That is, $g(p)=-f(p)=\mu(p) f(p)$, which finishes the proof.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

