Solutions to practice problems for Midterm 1

1. Find the gcd of 621 and 483.

Solution: We run the Euclidean algorithm:

$$
\begin{aligned}
& 621=\mathbf{1} \cdot 483+138 \\
& 483=\mathbf{3} \cdot 138+69 \\
& 138=2 \cdot 69 .
\end{aligned}
$$

So $\operatorname{gcd}(621,483)=69$.
2. Find a solution of $621 m+483 n=k$, where k is the gcd of 621 and 483 .

Solution: Building upon problem 1, we extend the table:

1	1	0	621
1	0	1	483
3	1	-1	138
	-3	4	69

So $-3 \cdot 621+4 \cdot 638=69$, i.e. $(m, n)=(-3,4)$ works.
3. Calculate 3^{64} modulo 67 by repeated squaring.

Solution: We have

$$
\begin{aligned}
3^{4}=81 & \equiv 14 \\
3^{8} \equiv 14^{2}=196 & (\bmod 67) \\
3^{16} \equiv-5 & (\bmod 67) \\
5^{2} & \equiv 25 \quad(\bmod 67) \\
3^{32} \equiv 25^{2}=625 & \equiv 22 \quad(\bmod 67) \\
3^{64} \equiv 22^{2}=484 & \equiv 15
\end{aligned} \quad \bmod 67 .
$$

4. Calculate 3^{64} modulo 67 using Fermat's little theorem.

Solution: We know $3^{66} \equiv 1(\bmod 67)$. So

$$
3^{2} \cdot 3^{64} \equiv 1 \quad(\bmod 67)
$$

. so we just need to invert $9 \bmod 67$. You can either do this by the Euclidean algorithm, or by inspection. For example, $67 \cdot 2+1=135=15.9$, so it follows that $9^{-1} \equiv 15(\bmod 67)$.
5. Calculate $\phi(576)$.

Solution: The factorization is $576=24^{2}=2^{6} \cdot 3^{2}$. So $\phi(576)=2^{5} \cdot 3 \cdot 2=192$.
6. Find all the solutions of $x^{3}-x+1 \equiv 0(\bmod 25)$. Let $f(x)=x^{3}-x+1$. First we find solutions to $f(x) \equiv 0(\bmod 5)$, just by trying all the values of x modulo 5 . We see that $x \equiv-2(\bmod 5)$ is the only solution. Now we want to apply Hensel's lemma. We have
$f^{\prime}(x)=3 x^{2}-1$ and $f^{\prime}(-2)=11 \equiv 1(\bmod 5)$. So $\overline{f^{\prime}(-2)}=f^{\prime}(-2)^{-1} \equiv 1(\bmod 5)$. Finally, $f(-2)=-5$, so the solution modulo 25 is

$$
-2-(-5) \cdot 1=3 \quad(\bmod 2) 5
$$

We check that $3^{3}-3+1=25 \equiv 0(\bmod 25)$.
7. Find all solutions of $x^{3}-x+1 \equiv 0(\bmod 35)$.

Solution: The idea is to solve it modulo 5 and 7 and then use the Chinese remainder theorem. The unique solutions modulo 5 and 7 are -2 and 2 , respectively. Also, we have $3 \cdot 5-2 \cdot 7=1$. So to combine the solutions, we take

$$
15 \cdot 2+(-14) \cdot(-2)=30+28=58 \equiv 23 \quad(\bmod 35) .
$$

8. Find the smallest integer N such that $\phi(n) \geq 5$ for all $n \geq N$.

Solution: Trying out small values of n, we see that $\phi(12)=4$ but $\phi(n)$ seems to be greater than 4 for all $n \geq 13$. Let's prove this: suppose $n \geq 11$. Let $n=\prod p_{i}^{e_{i}}$, so $\phi(n)=$ $\prod p_{i}^{e_{i}-1}\left(p_{i}-1\right)$. Let e be the power of 2 dividing n. If $e \geq 4$, then $\phi(n) \geq 2^{e-1} \geq 8$. So we only need to consider $e=0,1,2,3$.
If $e=0$, then n is odd. If n is prime, then $\phi(n)=n-1 \geq 12$. Otherwise, either n will be divisible by at least two distinct odd primes p and q, in which case $\phi(n) \geq(p-1)(q-1) \geq 2 \cdot 4=$ 8 , or n is divisible by p^{2} for some odd prime p, in which case $\phi(n) \geq p(p-1) \geq 3(3-1)=6$.
Next suppose $e=1$. Then $n=2 m$ where m is odd and $m=n / 2 \geq 7$. We have $\phi(n)=\phi(m)$. Then if m is prime, $\phi(n)=m-1 \geq 6$. Otherwise, the above reasoning (for the $e=0$ case) shows that $\phi(n) \geq 6$.
Next, the case $e=2$. Then $n=4 m$, with m odd and $m=n / 4>3$, so $m \geq 5$ since m is an odd integer. So $\phi(n)=2 \phi(m)$. As before we show that $\phi(m) \geq 4$, so $\phi(n) \geq 8$.
Finally, if $e=3$ then $n=8 m$, with m odd and $m=n / 8>1$. So $m \geq 3$. Then $\phi(n)=$ $4 \phi(m)=4 \cdot 2=8$.
9. Find two positive integers m, n such that $\phi(m n) \neq \phi(m) \phi(n)$.

Solution: In fact, any two integers which are not coprime will do! For example, $m=n=2$ gives $\phi(m)=\phi(n)=1$ and $\phi(m n)=2$.
10. True or false: two positive integers m, n are coprime if and only if $\phi(m n)=\phi(m) \phi(n)$. Give a proof or counterexample.
Solution: This is true. Let p_{i} (for $i \in I$) be the common primes dividing both m and n. Let q_{j} (for $j \in J$) be the primes dividing m but not n, and let r_{k} (for $k \in K$) be the primes dividing n but not m.
and

$$
m=\prod p_{i}^{e_{i}} \prod q_{j}^{f_{j}}
$$

$$
n=\prod p_{i}^{f_{i}} \prod r_{k}^{h_{k}}
$$

Then calculating $\phi(m), \phi(n)$ and $\phi(m n)$ gives

$$
\frac{\phi(m) \phi(n)}{\phi(m n)}=\prod\left(1-\frac{1}{p_{i}}\right) .
$$

Since $1-1 / p_{i}<1$, the only way this product could be 1 is if its is empty, i.e. if there are no common primes dividing m and n.
11. Give the definition of a reduced residue system modulo n.
12. State and prove the Chinese remainder theorem.
13. Show that $(n-1)!\equiv 0(\bmod n)$ for composite $n>4$. [Hint: Make sure that your proof works for the case $n=p^{2}$, where p is a prime].
Solution: Let p be the smallest prime dividing n. If $n \neq p^{2}$ then p and n / p are both less than n and are distinct. So $(n-1)$! is divisible by $p(n / p)=n$. Now, if $n=p^{2}$ then since $p>2$ (because $n>4$) we see that p and $2 p$ are both less than n. So $(n-1)!$ is divisible by $p \cdot 2 p=2 p^{2}=2 n$ and therefore by n.
14. Solve the system of congruences

$$
\begin{array}{ll}
x \equiv 1 & (\bmod 3) \\
x \equiv 2 & (\bmod 5) \\
x \equiv 3 & (\bmod 7)
\end{array}
$$

Solution: We need to apply CRT. We have $3 \cdot 5=15 \equiv 1(\bmod 7)$, with inverse 1 . Next, $3 \cdot 7=21 \equiv 1(\bmod 5)$, with inverse 1 . Finally, $5 \cdot 7=35 \equiv-1(\bmod 3)$, with inverse -1 . So the solution is

$$
x \equiv 1 \cdot 35 \cdot(-1)+2 \cdot 21 \cdot 1+3 \cdot 15 \cdot 1=-35+42+45=52 \quad(\bmod 105) .
$$

15. Let n be a positive integer. Show the identity

$$
\sum_{i=1}^{n} i\binom{n}{i}=n 2^{n-1}
$$

[Hint: differentiate both sides of the Binomial theorem, or manipulate the binomial coefficients.]
Solution: We have $(1+x)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i}$. Differentiating we get

$$
n(1+x)^{n-1}=\sum_{i=1}^{n} i\binom{n}{i} x^{i-1}
$$

where the $i=0$ term goes away because differentiating a constant gives 0 . Now plugging in $x=1$, we get the result.
16. Calculate the order of 3 modulo 301.

Solution: Note that $301=7 \cdot 43$. If h_{1} is the order of $3 \bmod 7$ and h_{2} is the order of 3 $\bmod 43$, then the order of $3 \bmod 301$ will just be the LCM (least common multiple of h_{1} and $\left.h_{2}\right)$. Now, we know by Fermat that $3^{6} \equiv 1(\bmod 7)$. It's easy to see that 3^{2} and 3^{3} are not 1 modulo 7. So $h_{1}=6$. Also $3^{42} \equiv 1(\bmod 43)$. Since the order divides 42 , it either equals 42 or divides $42 / p$, where p is one of the primes dividing 42 , namely 2,3 or 7 . Now it's easy to check that $3^{21}, 3^{14}, 3^{6}$ are all not $1 \bmod 43$. So $h_{2}=42$. Therefore $h_{2}=42$. Therefore the order of $3 \bmod 301$ is $\operatorname{LCM}(6,42)=42$.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

