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3. (a) Proceed by contradiction, assuming that b < qn+1 and |bx − a| < |qnx − pn|. As in the hint,
we write the vector (a, b) as an integer linear combination of (pn, qn) and (pn+1, qn+1). This is
possible because the matrix with rows (pn, qn) and (pn+1, qn+1) has determinant (−1)n+1 and is
therefore invertible with the inverse having integer entries. So there are integers y, z such that

a = ypn + zpn+1

b = yqn + zqn+1

First let’s make sure that y and z are nonzero. If y = 0 then b = zqn+1, which is impossible since
0 < b < qn+1. If z = 0 then

|bx− a| = |y||xqn − pn| ≥ |xqn − pn|,

contradicting the assumption that |xb− a| < |xqn − pn|. So both y and z are nonzero.

Next, we’ll show that they have opposite signs. If z > 0 then

yqn = b− zqn+1 ≤ b− qn+1 < 0,

so y < 0, and if z < 0 then
yqn = b− zqn+1 > 0,

so y > 0. Finally,

xb− a = x(yqn + zqn+1)− (ypn + zpn+1)

= y(xqn − pn) + z(xqn+1 − pn+1)

Now we showed that x−pn/qn and x−pn+1/qn+1 have opposite signs. Since y and z have opposite
signs, y(xqn − pn) and z(xqn+1 − pn+1) have the same sign. So

|bx− a| = |y(xqn − pn) + z(xqn+1 − pn+1)|
= |y||xqn − pn|+ |z||xqn+1 − pn+1|
≥ |qnx− pn|,

contradiction.
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Now |aq − bp | ≥ 1 because by assumption a = pn
n n . Hence,b qn
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This implies that 1 < 1
2 , so b < qn, contradiction.2bqn 2b

5. Problem 4 shows that if p/q satisfies ∣
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then p/q is a convergent to φ, since κ >
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∣
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From this statement it would then follow
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for all n > N . Then the only solutions to

∣∣ ∣∣
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n ≤ N , and thus there are finitely many such
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Now let α and β be the roots of x2 − x− 1 = 0, with φ = α > β. Since Fn = (αn − βn)/(α− β),(
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We know that β2n
√ → 0 as n→∞ because |β| < 1. It follows that the magnitude of the RHS approaches

1/ 5, and we are done.

6. (a) Since i is the largest integer such that qi
√≤ p, we have

√
p < qi+1. So∣∣pi u 1

<
qi
−
p

∣∣ 1
<

qiqi+1 qi
√ .
p

Multiplying by pqi, we get the desired

∣∣
bound
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|pip− uqi| <

√
p.
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(b) We have x = qi
√≤ p, and by part (a), |y| = √|pip−uqi| < p, so x2 + y2 < p+ p = 2p. Moreover,

x2 + y2 ≡ q2i + u2q2i

≡ (u2 + 1)q2i

≡ 0 (mod p).

Clearly, x2 + y2 > 0, since x = qi > 0. The only multiple of p in (0, 2p) is p, so we must have
x2 + y2 = p.

7. We need to find all c such that x = (
√
d +

√
b dc)/c > 1 and its conjugate x′ = (

√
− d +

√
b dc)/c lies

between 0 and −1. The second condition is automatic since the numerator is always between 0 and
−1, and c is a positive integer. The first condition holds for all positive integers c ≤ 2

√
b dc.

8. (a) Consider the fractional part {ix} of ix as i ranges from 0 through N . Since x is irrational, each
{ix} is a distinct number in the range [0, 1). In fact, we’ll want to wrap the interval into a circle.
Consider the N+1 segments that the circle is broken up into by the {ix}. Since the total arclength
of the segments is 1, some segment has length no more than 1 . What this means is that thereN+1
are two integers i, j ∈ {0, 1, . . . , N} such that for some integer a

1
0 < |jx− ix+ a| ≤ .

N + 1

Setting q = |i− j| < N and p = a, division by i− j yields
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as desired.
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Then, since x is irrational, we can pick an N2 such that

1
<

N2

∣∣ p
x− 1 ∣

.
q1

∣
Again using part (a), there exists p2/q2 with q2

∣∣ ∣
≤ N2 suc

∣
h that∣∣∣ p

∣∣ 1 1
∣∣ p

∣∣
so p1/q1 is distinct from p2/q

∣ 2
x−

q2
∣∣ ≤ < <

q2(N2 + 1) N2

∣∣x− 1

q1

2, and as before

∣∣ ,
∣∣∣ p2 1 1
x−

q2

Picking N3 with 1/N3 < |x− p2/q2| and con
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tinuing this process, we can form an infinite series of
distinct pi/qi such that |x− pi/qi| < 1/qi .

9. (a) We have that x = m+ 1 . Solving the quadratic equation and taking the positive root, we getx
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(b) We know that pn = mpn 1 + pn 2, so the characteristic polynomial is x2 −mx − 1 = 0. Thus,− −
letting

m+
√
m2 + 4 m

√
− m2 + 4

α = , β =
2 2

be the roots of the characteristic polynomial, pn = Aαn + Bβn. Using the initial conditions
p0/q0 = m/1 and p1/q1 = (m2 + 1)/m, we can solve the linear system of equations to get α2
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Similarly, it can be shown that qn = (αn+1 − βn+1)/(α− β). Therefore,
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10. (a) Suppose we have proven the inequality for n = 2k−1. Then(
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completing the induction.

(b) Let 2k−1 < n ≤ 2k, and append 2k − n copies of r = r1+···+rn . Then the arithmetic mean ofn
r1, . . . , rn, r, . . . , r is

r1 + · · ·+ rn + (2k − n)r nr + (2k
=

2k
− n)r

2k
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Now part (a) tells us that
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k

,
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k

(r1 · · · rn) · r2 −n,

from which it follows that
r
√

≥ n r1 · · · rn.

Equality holds if and only if r1 = r2 = · · · = rn.
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11. We will first define a particular number x (called Liouville’s number) which will work for any c. Choose
exponents e = n! and let q = 10enn n . Note that for all k, ek < ek+1, so qk | qk+1. Now define

1 1 1
x = 1 + + + +

q1 q2 q3
· · · ,

which converges because qn ≥ 10n and the geometric series 1 + 1/10 + 1/100 + · · · converges, and let
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So we’ll be done if we show that for all large enough n,

2 1
< .

qn qc+1 n

Taking logs base 10, this is equivalent to saying that

log10 2 + c(n!) < (n+ 1)!,

which is obviously true as soon as n > c + 1, for instance. Thus, for any c, there are infinitely many
rational numbers p/q such that ∣∣∣ p∣x− q
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qc
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