18.781 Solutions to Problem Set 8

1. We know that

$$
(1+x)^{n}=\sum\binom{n}{k} x^{k}
$$

Now we plug in $x=1, \omega, \omega^{2}$ and add the three equations. If $3 \nmid k$ then we'll get a contribution of $1^{k}+\omega^{k}+\omega^{2 k}=1+\omega+\omega^{2}=0$, whereas if $3 \mid k$ we'll get a contribution of $1^{k}+1^{k}+1^{k}=3$. So

$$
\begin{aligned}
\sum\binom{n}{3 k} & =\frac{(1+1)^{n}+(1+\omega)^{n}+\left(1+\omega^{2}\right)^{n}}{3} \\
& =\frac{2^{n}+\left(-\omega^{2}\right)^{n}+(-\omega)^{n}}{3} \\
& =\left\{\begin{array}{lll}
\left(2^{n}+2\right) / 3 & \text { if } n \equiv 0 \quad(\bmod 6) \\
\left(2^{n}-2\right) / 3 & \text { if } n \equiv 3 \quad(\bmod 6) \\
\left(2^{n}-1\right) / 3 & \text { if } n \equiv 2,4 \quad(\bmod 6) \\
\left(2^{n}+1\right) / 3 & \text { if } n \equiv 1,5 \quad(\bmod 6)
\end{array}\right.
\end{aligned}
$$

2. We have

$$
\begin{aligned}
\frac{d}{d x}(\tilde{A}(x)) & =\frac{d}{d x}\left(\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}\right) \\
& =\sum_{n \geq 1} a_{n} \frac{n x^{n-1}}{n!} \\
& =\sum_{n \geq 0} a_{n+1} \frac{x^{n}}{n!}
\end{aligned}
$$

which is the exponential generating function of $\left\{a_{1}, a_{2}, \ldots\right\}$.
3. Since c_{n} is n ! times the coefficient of x^{n} in $\tilde{A}(x) \tilde{B}(x)$,

$$
\begin{aligned}
c_{n} & =n!\sum_{k=0}^{n} \frac{a_{k}}{k!} \cdot \frac{b_{n-k}}{(n-k)!} \\
& =\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k} .
\end{aligned}
$$

4. By part (a), $\frac{d}{d x} E(x)$ is the exponential generating function for the sequence $\left\{r, r^{2}, r^{3}, \ldots\right\}$. It follows that $E^{\prime}(x)=r E(x)$. Since $E(0)=1$, solving the differential equation, we get

$$
E(x)=\sum_{n \geq 0} \frac{r^{n} x^{n}}{n!}=e^{r x}
$$

5. (a) In $\operatorname{gp}, x /(\exp (x)-1)$ gives the sequence of B_{n} / n !, from which we deduce

$$
\begin{array}{r|r|r|r|r|r|r|r|r|r|r|r}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline B_{n} & 1 & -\frac{1}{2} & \frac{1}{6} & 0 & -\frac{1}{30} & 0 & \frac{1}{42} & 0 & -\frac{1}{30} & 0 & \frac{5}{66}
\end{array}
$$

(b) First, note that

$$
f(x)-f(-x)=\sum_{n \text { odd }} \frac{2 B_{n}}{n!} x^{n}
$$

On the other hand,

$$
\begin{aligned}
f(x)-f(-x) & =\frac{x}{e^{x}-1}-\frac{-x}{e^{-x}-1} \\
& =\frac{x}{e^{x}-1}+\frac{x e^{x}}{1-e^{x}} \\
& =\frac{x\left(1-e^{x}\right)}{e^{x}-1} \\
& =-x .
\end{aligned}
$$

So for $n \geq 3$ odd, $B_{n}=0$.
(c) Multiplying both sides of the defining equation by $e^{x}-1$, we have

$$
x=\left(\sum_{n \geq 0} B_{n} \frac{x^{n}}{n!}\right)\left(\sum_{n>0} \frac{x^{n}}{n!}\right)
$$

For $n \geq 2$, the coefficient of x^{n} is

$$
0=\sum_{k=0}^{n-1}\binom{n}{k} B_{k}
$$

(d) We have

$$
\begin{aligned}
\sum_{k \geq 0} S_{k}(n) \frac{x^{k}}{k!} & =\sum_{k \geq 0}\left(1^{k}+2^{k}+\cdots+n^{k}\right) \frac{x^{k}}{k!} \\
& =e^{x}+e^{2 x}+\cdots+e^{n x} \\
& =e^{x} \cdot \frac{e^{n x}-1}{e^{x}-1} \\
& =\frac{e^{n x}-1}{x} \cdot \frac{-x}{e^{-x}-1} \\
& =\left(\sum_{l=0}^{\infty} \frac{n^{l+1}}{(l+1)!} x^{l}\right)\left(\sum_{m=0}^{\infty}(-1)^{m} \frac{B_{m}}{m!} x^{m}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
S_{k}(n) & =k!\sum_{m=0}^{k} \frac{n^{k-m+1}}{(k-m+1)!} \cdot(-1)^{m} \frac{B_{m}}{m!} \\
& =\frac{1}{k+1} \sum_{m=0}^{k}\binom{k+1}{m}(-1)^{m} B_{m} n^{k+1-m}
\end{aligned}
$$

6. (a) If $m=a^{2}+b^{2}$ and $n=c^{2}+d^{2}$, then

$$
m n=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d-b c)^{2}
$$

Now if $p \equiv 1(\bmod 4)$ then p is a sum of two squares (shown in class). If $p \equiv 3(\bmod 4)$ then $q^{2}=q^{2}+0^{2}$ is a sum of two squares. Finally, $2=1^{2}+1^{2}$ is a sum of two squares. So any integer of the given form is a sum of two squares.
(b) We want to use induction on n. Assume we have shown that for all integers less than n which are sums of two squares, every prime $p \equiv 3(\bmod 4)$ dividing such an integer divides it to an even power. Now suppose $n=a^{2}+b^{2}$ and let $q \equiv 3(\bmod 4)$ be a prime dividing n (if there is no such prime, we are done). We claim that q divides a and b. Otherwise, say without loss of generality that $q \nmid b$. Since $a^{2}+b^{2}=n \equiv 0(\bmod q)$, we must have $\left(a b^{-1}\right)^{2} \equiv-1(\bmod q)$, which is impossible. This shows that $q \mid a, b$.
Now write $a=a^{\prime} q$ and $b=b^{\prime} q$, so that $n=q^{2}\left(a^{\prime 2}+b^{\prime 2}\right)$. Letting $m=a^{\prime 2}+b^{\prime 2}$, by the inductive hypothesis it follows that m is divisible by primes congruent to $3 \bmod 4$ to even powers. Since $n=q^{2} m, n$ satisfies the same property. With the trivial base case $n=1$, the induction is complete.
(c) One direction is obvious: if n is a sum of two integer squares, then it's a sum of two rational squares. Suppose now that n is a sum of two rational squares α^{2} and β^{2}. Taking the common denominator, we write $\alpha=a / d, \beta=b / d$. Then $a^{2}+b^{2}=n d^{2}$.
Now if we consider any prime $q \equiv 3(\bmod 4)$ then q divides $a^{2}+b^{2}$ an even number of times. Obviously q also divides d^{2} an even number of times. Therefore, q divides n an even number of times, so n is of the form mentioned in part (b), and is thus a sum of two integer squares.
7. (a) We have

$$
\Phi_{3}(x)=\frac{x^{3}-1}{x-1}=x^{2}+x+1
$$

Hence $\omega^{2}=-\omega-1$. Now for any complex number $a+b \omega$,

$$
\begin{aligned}
|a+b \omega|^{2} & =(a+b \omega)(\overline{a+b \omega}) \\
& =(a+b \omega)\left(a+b \omega^{2}\right) \\
& =a^{2}+b^{2}+a b\left(\omega+\omega^{2}\right) \\
& =a^{2}-a b+b^{2} .
\end{aligned}
$$

So if $M=a^{2}-a b+b^{2}=|a+b \omega|^{2}$ and $N=c^{2}-c d+d^{2}=|d+c \omega|^{2}$, then

$$
\begin{aligned}
M N & =|(a+b \omega)(d+c \omega)|^{2} \\
& =\left|a d+b c \omega^{2}+(a c+b d) \omega\right|^{2} \\
& =|a d+b c(-\omega-1)+(a c+b d) \omega|^{2} \\
& =(a d-b c)^{2}-(a d-b c)(a c+b d-b c)+(a c+b d-b c)^{2}
\end{aligned}
$$

is of the same form.
(b) Suppose $p \equiv 2(\bmod 3)$ and $p=a^{2}-a b+b^{2}$. Then $p \nmid a$ or $p \nmid b$, since otherwise $p=a^{2}-a b+b^{2}$ would be divisible by p^{2}. In fact, if $p \mid a$ then $p=a^{2}-a b+b^{2}$ implies $p \mid b^{2}$, so $p \mid b$ as well. Thus, p divides neither a nor b. Anyway, $(2 a-b)^{2}+3 b^{2}=4\left(a^{2}-a b+b^{2}\right) \equiv 0(\bmod p)$, so

$$
\left(\frac{2 a-b}{b}\right)^{2} \equiv-3 \quad(\bmod p)
$$

Therefore, -3 is a square mod p. But we've shown before (using quadratic reciprocity) that -3 is a square $\bmod p$ if and only if $p=3$ or $p \equiv-1(\bmod 3)$, contradiction.
8. (a) For $p=3$, we have trivially $3=1^{2}-(1)(-1)+(-1)^{2}$.

Now suppose $p \equiv 1(\bmod 3)$. We'll prove by induction on p that p is of the form $a^{2}-a b+b^{2}$. Assume we have proven this statement for primes less than p. (We can take as our base case $\left.7=3^{2}-(3)(1)+1^{2}.\right)$
We know -3 is a square $\bmod p$, so let x be the solution to $x^{2} \equiv-3(\bmod p)$, and write $x=2 y-1$ for some y. Then y satisfies $y^{2}-y+1 \equiv 0(\bmod p)$. We can take $|y|<p / 2$, so

$$
y^{2}-y+1<\frac{p^{2}}{4}+\frac{p}{2}+1<p^{2}
$$

Hence $y^{2}-y+1=n p$ for some $n<p$, and we have in addition that $n>0$ since $y^{2}-y+1=$ $(y-1 / 2)^{2}+3 / 4>0$.
Now let m be the smallest positive integer such that $m p$ can be written in the form $a^{2}-a b+b^{2}$. Note that by the above proof $m<p$, and if $m=1$ then we are done.
Assume, for the sake of contradiction, that $m>1$. Let $m p=a^{2}-a b+b^{2}$. We may assume that $g=\operatorname{gcd}(a, b)=1$, else $g^{2} \mid m$ and thus we can divide a and b by g to reduce m to m / g^{2}. Now let l be a prime dividing m. Then $l \nmid a$ or $l \nmid b$; say $l \nmid b$. As in Problem 7, we have

$$
\left(\frac{2 a-b}{b}\right)^{2} \equiv-3 \quad(\bmod l)
$$

so $l=3$ or $l \equiv 1(\bmod 3)$.
First, suppose $l=3$. Then we have $a^{2}-a b+b^{2} \equiv 0(\bmod 3)$. Since 3 cannot divide both a and b, it can be easily checked that the only possibility is that $a \equiv 1(\bmod 3)$ and $b \equiv-1(\bmod 3)$ (or vice versa). Then

$$
\left(\frac{a+b}{3}\right)^{2}-\left(\frac{a+b}{3}\right)\left(\frac{2 a-b}{3}\right)+\left(\frac{2 a-b}{3}\right)^{2}=\frac{a^{2}-a b+b^{2}}{3}=\left(\frac{m}{3}\right) p
$$

so we have a smaller multiple of p, contradiction.
Therefore we must have $l>3$. Then $x^{2}-x+1 \equiv 0(\bmod l)$ for $x \equiv a b^{-1}(\bmod l)$. Also, since $l \leq m<p$, by the inductive hypothesis l is of the form $l=c^{2}-c d+d^{2}$. Again, we can assume that $l \nmid d$, so $y^{2}-y+1 \equiv 0(\bmod l)$ for $y \equiv c d^{-1}$.
Now $x^{2}-x+1 \equiv y^{2}-y+1(\bmod l)$, so

$$
(x-y)(x+y-1) \equiv 0 \quad(\bmod l)
$$

Thus either $x \equiv y(\bmod l)$ or $x \equiv 1-y(\bmod l)$. In the second case, replacing (c, d) by $(d-c, d)$, we note that

$$
(d-c)^{2}-(d-c) d+d^{2}=d^{2}-c d+c^{2}=l
$$

and $(d-c) d^{-1}=1-c d^{-1}=1-y$, so we may assume that $x \equiv y(\bmod l)$. It follows that $a b^{-1} \equiv c d^{-1}(\bmod l)$, so $l \mid a d-b c$.
Now we showed in Problem 7 that

$$
\left(a^{2}-a b+b^{2}\right)\left(c^{2}-c d+d^{2}\right)=(a d-b c)^{2}-(a d-b c)(a c+b d-b c)+(a c+b d-b c)^{2}
$$

The LHS and the first two terms of the RHS are divisible by l. Thus, $l \mid a d+b d-b c$. Writing $a d-b c=x l$ and $a c+b d-b c=y l$, we now have

$$
(m p)(l)=x^{2} l^{2}-x y l^{2}+y^{2} l^{2}
$$

So

$$
\left(\frac{m}{l}\right) p=x^{2}-x y+y^{2}
$$

showing that m is not minimal, contradiction.
Therefore every prime $p \equiv 1(\bmod 3)$ can be written in the form $a^{2}-a b+b^{2}$.
(b) One direction is easy: suppose n is positive and every prime $q \equiv 2(\bmod 3)$ divides n to an even power. We showed that 3 and primes $p \equiv 1(\bmod 3)$ are of the form $a^{2}-a b+b^{2}$. And for $q \equiv 2$ $(\bmod 3)$, we have trivially that $q^{2}=q^{2}-q \cdot 0+0^{2}$ is also of this form. Since the set of numbers of the form $a^{2}-a b+b^{2}$ is closed under multiplication, it follows that n is of the form $a^{2}-a b+b^{2}$ for some integers a, b.
To prove the converse, we first note that if $n=a^{2}-a b+b^{2}$ then

$$
n=\left(a-\frac{b}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}>0
$$

(We will exclude the case $a=b=n=0$.) We now proceed with induction on n. The base case $1=1^{2}-1 \cdot 0+0^{2}$ is obvious.
Suppose $q \equiv 2(\bmod 3)$ divides $4 n$. We claim that $q \mid a, b$. Otherwise, without loss of generality, assume that $q \nmid b$. Then

$$
\left(\frac{2 a-b}{b}\right)^{2} \equiv-3 \quad(\bmod q)
$$

showing that -3 is a square $\bmod q$, which is impossible. So we can write $a=a^{\prime} q, b=b^{\prime} q$, and thus $n=q^{2}\left(a^{2}-a^{\prime} b^{\prime}+b^{2}\right)$. By the inductive hypothesis, q divides $a^{2}-a^{\prime} b^{\prime}+b^{2}$ to an even power, so it divides n to an even power as well. This completes the induction.
9. Computing,

$$
\begin{aligned}
\frac{6157}{783} & =7+\frac{676}{783} \\
& =7+\frac{1}{783 / 676} \\
& =7+\frac{1}{1+\frac{107}{676}} \\
& =7+\frac{1}{1+\frac{1}{676 / 107}} \\
& =7+\frac{1}{1+\frac{1}{6+\frac{34}{107}}} \\
& =7+\frac{1}{1+\frac{1}{6+\frac{1}{107 / 34}}} \\
& =7+\frac{1}{1+\frac{1}{6+\frac{1}{3+\frac{5}{34}}}} \\
& =[7,1,6,3,34 / 5] \\
& =[7,1,6,3,6,5 / 4] \\
& =[7,1,6,3,6,1,4] \\
& =7+\frac{1}{1+\frac{1}{34 / 5}} \\
& =7+\frac{1}{1}
\end{aligned}
$$

Next,

$$
\begin{aligned}
\sqrt{15} & =3+\sqrt{15}-3 \\
& =3+\frac{6}{\sqrt{15}+3} \\
& =3+\frac{1}{(3+\sqrt{15}) / 6} \\
& =3+\frac{1}{1+\frac{\sqrt{15}-3}{6}} \\
& =3+\frac{1}{1+\frac{1}{6 /(\sqrt{15}-3)}} \\
& =3+\frac{1}{1+\frac{1}{\sqrt{15}+3}} \\
& =3+\frac{1}{1+\frac{1}{6+\sqrt{15}-3}} \\
& =[3,1,6,1, \ldots] \\
& =[3, \overline{1,6}] .
\end{aligned}
$$

10. Taking the \log of both sides,

$$
\log \sin z=\log z+\sum_{n \geq 1} \log \left(1-\frac{z^{2}}{n^{2} \pi^{2}}\right)
$$

Differentiating,

$$
\cot z=\frac{1}{z}+\sum \frac{-\frac{2 z}{n^{2} \pi^{2}}}{1-\frac{z^{2}}{n^{2} \pi^{2}}},
$$

so

$$
\begin{aligned}
z \cot z & =1+2 \sum \frac{z^{2}}{z^{2}-n^{2} \pi^{2}} \\
& =1-2 \sum \frac{z^{2}}{n^{2} \pi^{2}}\left(\frac{1}{1-\frac{z^{2}}{n^{2} \pi^{2}}}\right) \\
& =1-2 \sum \frac{z^{2}}{n^{2} \pi^{2}}\left(\sum_{k \geq 0}\left(\frac{z^{2}}{n^{2} \pi^{2}}\right)^{k}\right) \\
& =1-2 \sum_{n \geq 1} \sum_{k \geq 1} \frac{z^{2 k}}{n^{2 k} \pi^{2 k}}
\end{aligned}
$$

On the other hand, we have

$$
\frac{x}{e^{x}-1}=\sum_{r \geq 0} B_{r} \frac{x^{r}}{r!}
$$

and plugging in $x=2 i z$,

$$
\begin{aligned}
\sum B_{r} \frac{(2 i z)^{r}}{r!} & =\frac{2 i z}{e^{2 i z}-1} \\
& =\frac{2 i z e^{-i z}}{e^{i z}-e^{-i z}} \\
& =\frac{2 i z(\cos z-i \sin z)}{2 i \sin z} \\
& =z \cot z-i z
\end{aligned}
$$

Taking the real part of this equation, we get

$$
\begin{aligned}
z \cot z & =\sum_{\substack{r \geq 0 \\
r \text { even }}} B_{r} \frac{(2 i)^{r}}{r!} z^{r} \\
& =\sum_{k \geq 0} B_{2 k} \frac{(-1)^{k} 2^{2 k}}{(2 k)!} z^{2 k} \\
& =1-\sum_{k \geq 1}(-1)^{k-1} \frac{B_{2 k} 2^{2 k}}{(2 k)!} z^{2 k} .
\end{aligned}
$$

Equating the two expressions, and taking the coefficient of $z^{2 k}$,

$$
(-1)^{k-1} \frac{B_{2 k} 2^{2 k}}{(2 k)!}=\frac{2}{\pi^{2 k}} \sum_{n \geq 1} \frac{1}{n^{2 k}}
$$

So we conclude that

$$
\zeta(2 k)=\sum_{n \geq 1} \frac{1}{n^{2 k}}=(-1)^{k-1} B_{2 k} \frac{2^{2 k-1}}{(2 k)!} \pi^{2 k}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

