18.781 Problem Set 8

Thursday, May 3.
Collaboration is allowed and encouraged. However, your writeups should be your own, and you must note on the front the names of the students you worked with.
Extensions will only be given for extenuating circumstances.

1. Let n be a positive integer. Evaluate

$$
\sum_{k=0}^{n}\binom{n}{3 k}
$$

[Hint: use the generating function $(1+x)^{n}=\sum\binom{n}{k} x^{k}$]
2. For a sequence $\left\{a_{n}\right\}$, we can define another kind of generating function, called an exponential generating function, as follows:

$$
\tilde{A}(x)=\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}
$$

It satisfies many of the nice properties we have seen for generating functions (for example, linearity with respect to the sequence). But some properties are slightly modified.
(a) Show that the exponential generating function for the left-shifted sequence $\left\{a_{1}, a_{2}, \ldots,\right\}$ is $\frac{d}{d x} \tilde{A}(x)$.
(b) If $\tilde{A}(x)$ is the exponential generating function for $\left\{a_{n}\right\}$ and $\tilde{B}(x)$ is the exponential generating function for $\left\{b_{n}\right\}$, show that $\tilde{A}(x) \tilde{B}(x)$ is the exponential generating function for the sequence $\left\{c_{n}\right\}$ given by

$$
c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}
$$

(c) Show that the exponential generating function $E(x)$ for the sequence $a_{n}=r^{n}$ (where r is some fixed complex number) satisfies $E^{\prime}(x)=r E(x)$. Solve this differential equation to deduce that

$$
e^{r x}=\sum_{n \geq 0} \frac{r^{n} x^{n}}{n!}
$$

3. Define a sequence B_{n} by the identity

$$
f(x):=\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}
$$

i.e. B_{n} is n ! times the coefficient of x^{n} in the expansion of the left hand side, where one uses $e^{x}=\sum_{n=0}^{\infty} x^{n} / n!$.
(a) Calculate B_{0} through B_{10} (you may use gp).
(b) Show that for $n>1$ odd, $B_{n}=0$. [Hint: consider $f(x)-f(-x)$]
(c) Establish the recurrence (for $n \geq 2$)

$$
\sum_{k=0}^{n-1}\binom{n}{k} B_{k}=0
$$

[Hint: multiply both sides of the defining equation by $e^{x}-1$]
(d) Let $S_{k}(n)=1^{k}+2^{k}+\cdots+n^{k}$ be the sum of the k^{\prime} th powers of the first n natural numbers. Show that the S_{k} is given by the following polynomial of degree $k+1$ in n :

$$
S_{k}(n)=\frac{1}{k+1} \sum_{i=0}^{k}(-1)^{i}\binom{k+1}{i} B_{i} n^{k+1-i}
$$

[Hint: calculate $\sum_{k \geq 0} S_{k}(n) x^{k} / k!$]
4. (a) Let m and n be two integers which are sums of two squares. Show that $m n$ is a sum of two squares. Use this to show that any positive integer of the form $\prod p_{i}^{e_{i}} \prod q_{j}^{f_{j}}$, where p_{i} are primes which are 2 or $1 \bmod 4$, and q_{i} are primes which are $3 \bmod 4$, such that f_{j} are al even, is a sum of two integer squares.
(b) Now suppose n is a sum of two integer squares. Show that it must have the form above, i.e. if a prime q which is $3 \bmod 4$ divides n, then it must divide it to an even power. [Hint: If $n=a^{2}+b^{2}$, show q must divide a and b. Induct.]
(c) Show that n is a sum of squares of two rational numbers if and only if it's a sum of squares of two integers.
5. (a) Let $\omega=e^{2 \pi i / 3}$ be a primitive cube root of unity. Write down the cyclotomic polynomial $\Phi_{3}(x)$ and thereby compute ω^{2} in terms of ω. Now calculate the norm of the complex number $a+b \omega$. Use this to show that if m, n are two integers which can be written in the form $a^{2}-a b+b^{2}$, then their product can also be written likewise.
(b) Show that if p is a prime which can be written as $a^{2}-a b+b^{2}$, then p cannot be 2 $(\bmod 3)$, i.e. $p=3$ or $p \equiv 1(\bmod 3)$.
6. (a) Show 3 , and any prime p which is $1(\bmod 3)$, can be written as a $a^{2}-a b+b^{2}$, for some integers a and b. [Hint: imitate the proof from class for the sum of two squares]
(b) Show that an integers n can be written as $a^{2}-a b+b^{2}$ for integers m, n if and only if n is positive and every prime which is $2 \bmod 3$ and divides n, divides it to an even power.
7. Calculate the continued fractions of $6157 / 783$ and $\sqrt{15}$.
8. (Bonus)
(a) Take logs and differentiate the relation

$$
\sin (z)=z \prod_{n \geq 1}\left(1-\frac{z^{2}}{n^{2} \pi^{2}}\right)
$$

to show that

$$
z \cot z=1+2 \sum_{n \geq 1} \frac{z^{2}}{z^{2}-n^{2} \pi^{2}}=1-2 \sum_{n \geq 1} \sum_{k \geq 1} \frac{1}{n^{2 k}} \frac{z^{2 k}}{\pi^{2 k}}
$$

In $x /\left(e^{x}-1\right)=B_{r} x^{r} / r$!, plug in $x=2 i z$ adnd use $e^{i z}=\cos (z)+i \sin (z)$ to deduce (recalling that $B_{2 k+1}=0$ for $k \geq 1$) that

$$
z \cot z=1-\sum_{k \geq 1}(-1)^{k-1} B_{2 k} \frac{2^{2 k} z^{2 k}}{(2 k)!}
$$

Conclude that

$$
\zeta(2 k)=(-1)^{k-1} B_{2 k} \frac{2^{2 k-1}}{(2 k)!} \pi^{2 k}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

