18.781 Solutions to Problem Set 6

1. Since both sides are positive, it's enough to show their squares are the same. Now $\prod_{d \mid n} d=\prod_{d \mid n} \frac{n}{d}$, so

$$
\begin{aligned}
\left(\prod_{d \mid n} d\right)^{2} & =\left(\prod_{d \mid n} d\right)\left(\prod_{d \mid n} \frac{n}{d}\right) \\
& =\prod_{d \mid n} d \cdot \frac{n}{d} \\
& =\prod_{d \mid n} n \\
& =n^{d(n)}
\end{aligned}
$$

2. For a prime power p^{e}, we have

$$
\sigma_{k}\left(p^{e}\right)=1+p^{k}+\cdots+p^{e k}
$$

which is odd if and only if $p=2$ or e is even. So if $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, then

$$
\sigma_{k}(n)=\prod_{i=1}^{r} \sigma_{k}\left(p_{i}^{e_{i}}\right)
$$

is odd if and only if all the odd primes dividing n divide it to an even power, i.e., n is a square or twice a square.
3. Suppose $g=\operatorname{gcd}(a, b)>1$, and let $S(n)=\{d \in \mathbb{N}: d \mid n\}$ be the set of all positive divisors of n. We have a function $\phi: S(a) \times S(b) \rightarrow S(a b)$ given by $\phi(d, e)=d e$. The map ϕ is surjective, but not injective, because $\phi(g, 1)=\phi(1, g)$. So

$$
\begin{aligned}
\sigma_{k}(a b) & =\sum_{x \in S(a b)} x^{k} \\
& <\sum_{t \in S(a) \times S(b)} \phi(t)^{k} \\
& =\left(\sum_{d \mid a} d^{k}\right)\left(\sum_{e \mid b} e^{k}\right) \\
& =\sigma_{k}(a) \sigma_{k}(b)
\end{aligned}
$$

Similarly, $d(a b)<d(a) d(b)$ just says $|S(a b)|<|S(a)||S(b)|$, which is obvious from the fact that ϕ is surjective but not injective, or from noting that $d(n)=\sigma_{0}(n)$.
4. (a) If $2^{m}-1$ is prime then $\sigma\left(2^{m}-1\right)=2^{m}$. Since $\sigma\left(2^{m-1}\right)=1+2+\cdots+2^{m-1}=2^{m}-1$, if $n=2^{m-1}\left(2^{m}-1\right)$, then we have

$$
\sigma(n)=\sigma\left(2^{m-1}\right) \sigma\left(2^{m}-1\right)=\left(2^{m}-1\right) 2^{m}=2 n
$$

So n is perfect.
(b) Suppose n is perfect and even. Write $n=2^{r} s$ where $r \geq 1$ and s is odd. It's easy to rule out $s=1$, so we'll assume $s>1$. Then $\sigma(n)=\left(2^{r+1}-1\right) \sigma(s)$ must equal $2 n=2^{r+1} s$. So $2^{r+1}-1$ divides $2^{r+1} s$, and since $\operatorname{gcd}\left(2^{r+1}-1,2^{r+1}\right)=1$, we have $2^{r+1}-1 \mid s$.
Now if $s>2^{r+1}-1$, then s has at least the three divisors $1, s$, and $s /\left(2^{r+1}-1\right)$, which are distinct because $r \geq 1$. Thus

$$
\sigma(s) \geq 1+s\left(1+\frac{1}{2^{r+1}-1}\right)>s\left(\frac{2^{r+1}}{2^{r+1}-1}\right),
$$

so $\left(2^{r+1}-1\right) \sigma(s)>2^{r+1} s$, contradiction. Therefore we must have $s=2^{r+1}-1$, and $\sigma(s)=2^{r+1}$. But $s=2^{r+1}-1$ has at least the two divisors 1 and s, which sum to 2^{r+1} already. So the only possibility is that these are the only two divisors of s, i.e., s is prime.
5. The function $\Omega(n)$ is the number of primes dividing n, with multiplicity, so $\Omega(m n)=\Omega(m)+\Omega(n)$ for any m, n. Hence $\lambda(n)$ is totally multiplicative, and $\sum_{d \mid n} \lambda(d)$ is multiplicative (but not totally multiplicative). For prime powers p^{e},

$$
\begin{aligned}
\sum_{d \mid p^{e}} \lambda(d) & =\underbrace{1+(-1)+1+(-1)+\cdots+(-1)^{e}}_{(e+1) \text { terms }} \\
& = \begin{cases}0 & \text { if e is odd, } \\
1 & \text { if e is even. }\end{cases}
\end{aligned}
$$

So for $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}, \sum_{d \mid n} \lambda(d)$ will be 0 if any of the e_{i} are odd, and 1 if all of the e_{i} are even (which occurs precisely when n is a perfect square).
6. Both sides are multiplicative, so it's enough to show the equality for prime powers p^{e}. Since $1^{3}+\cdots+$ $n^{3}=\frac{n^{2}(n-1)^{2}}{4}$, as can be easily proven using induction,

$$
\begin{aligned}
\sum_{d \mid p^{e}} d(d)^{3} & =\sum_{i=0}^{e} d\left(p^{i}\right)^{3} \\
& =\sum_{i=0}^{e}(i+1)^{3} \\
& =\frac{e^{2}(e+1)^{2}}{4} \\
& =\left(\sum_{i=1}^{e+1} i\right)^{2} \\
& =\left(\sum_{d \mid p^{e}} d(d)\right)^{2} .
\end{aligned}
$$

7. (a) This is just a multiplicative version of the Möbius inversion formula. To prove it we use the fact that

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \tag{*}\\ 0 & \text { if } n>1 .\end{cases}
$$

So

$$
\begin{aligned}
\prod_{d \mid n} \hat{F}(d)^{\mu(n / d)} & =\prod_{d \mid n}\left(\prod_{e \mid d} f(e)\right)^{\mu(n / d)} \\
& =\prod_{\substack{e, f \\
e f \mid n}} f(e)^{\mu(n / e f)} \\
& =\prod_{e \mid n} f(e)^{\sum_{f \mid m} \mu(m / f)}
\end{aligned}
$$

where $m=n / e$. By $(*)$, this expression is simply $f(n)$.
(b) Writing this equation as

$$
\frac{\sum_{(a, n)=1} a}{n^{\phi(n)}}=\prod_{d \mid n}\left(\frac{d!}{d^{d}}\right)^{\mu(n / d)}
$$

we see that by part (a) it's enough to show that

$$
\prod_{d \mid n} f(d)=\frac{n!}{n^{n}}
$$

where

$$
f(n)=\prod_{\substack{a=1 \\(a, n)=1}}^{n}\left(\frac{a}{n}\right)
$$

is the left-hand side.
Now $\frac{n!}{n^{n}}$ is the product over $x \in\{1, \ldots, n\}$ of $\frac{x}{n}$. For any such x, let $g=\operatorname{gcd}(x, n)$. Then the fraction $\frac{x}{n}$ is reduced to $\frac{x / g}{n / g}$. Conversely, for any divisor n^{\prime} of n and any $x^{\prime} \in\left\{1, \ldots, n^{\prime}\right\}$ coprime to n^{\prime}, we have $\frac{x^{\prime}}{n^{\prime}}=\frac{x^{\prime} n / n^{\prime}}{n}$, where $x^{\prime} n / n^{\prime} \in\{1, \ldots, n\}$ has gcd exactly $g=n / n^{\prime}$ with n. Therefore,

$$
\begin{aligned}
\frac{n!}{n^{n}} & =\prod_{n^{\prime} \mid n}\left(\prod_{\substack{x^{\prime}=1 \\
\left(x^{\prime}, n^{\prime}\right)=1}}^{n^{\prime}} \frac{x^{\prime}}{n^{\prime}}\right) \\
& =\prod_{n^{\prime} \mid n} f\left(n^{\prime}\right)
\end{aligned}
$$

which is what we set out to prove.
8. (a) We have

$$
\begin{aligned}
Z(f, s) Z(g, s) & =\left(\sum_{m \geq 1} \frac{f(m)}{m^{s}}\right)\left(\sum_{n \geq 1} \frac{g(n)}{n^{s}}\right) \\
& =\sum_{m, n \geq 1} \frac{f(m) g(n)}{(m n)^{s}}
\end{aligned}
$$

which, when recast as a sum over $m n=k$, becomes

$$
\sum_{k \geq 1} \frac{\sum_{m \mid k} f(m) g(k / m)}{k^{s}}=Z(f * g, s)
$$

(b) First suppose f has an inverse $g=f^{-1}$. Then

$$
(f * g)(1)=f(1) g(1)=1
$$

so $f(1) \neq 0$.
Conversely, when $f(1) \neq 0$, we will construct a function g such that $f * g=\mathbf{1}$. First set $g(1)=$ $f(1)^{-1}$, which is forced as above. Now we will define $g(n)$ for all n, by induction on n. The base case $n=1$ is done. Suppose $g(n)$ has been defined for all n less than k. Then we have

$$
\begin{aligned}
0 & =\mathbf{1}(k) \\
& =(f * g)(k) \\
& =\sum_{d \mid k} f(d) g(k / d) \\
& =f(1) g(k)+\sum_{d \mid k, d>1} f(d) g(k / d)
\end{aligned}
$$

All the $g(k / d)$ for $d>1$ have been defined, by the inductive hypothesis, so we can solve this equation uniquely for $g(k)$. This completes the induction. By construction, $f * g=\mathbf{1}$, and by commutativity of $*$ we also have $g * f=\mathbf{1}$.
9. (a) This is a standard proof by induction.
(b) Splitting the integers from 1 through n by their gcd d with n, we get

$$
\begin{aligned}
\sum_{j=1}^{n} j^{2} & =\sum_{d \mid n} \sum_{(j, n)=d} j^{2} \\
& =\sum_{d \mid n} d^{2} S(n / d) \\
& =\sum_{d \mid n} \frac{n^{2}}{d^{2}} S(d)
\end{aligned}
$$

(c) Note that

$$
n^{2} \sum_{d \mid n} \frac{S(d)}{d^{2}}=\sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Therefore,

$$
\sum_{d \mid n} \frac{S(d)}{d^{2}}=\frac{1}{6}\left(2 n+3+\frac{1}{n}\right)
$$

and Möbius inversion gives

$$
\frac{S(n)}{n^{2}}=\sum_{d \mid n} \frac{1}{6} \mu(d)\left(\frac{2 n}{d}+3+\frac{d}{n}\right)
$$

(d) Since the LHS and RHS are both multiplicative, it's enough to show equality for prime powers p^{e}. In this case

$$
\sum_{d \mid p^{e}} d \mu(d)=1-p
$$

and

$$
(-1)^{\omega\left(p^{e}\right)} \phi\left(p^{e}\right) \frac{s\left(p^{e}\right)}{p^{e}}=(-1) p^{e-1}(p-1) \frac{p}{p^{e}}=1-p
$$

(e) As shown in part (c),

$$
\frac{S(n)}{n^{2}}=\frac{1}{3} \sum_{d \mid n} \mu(d) \frac{n}{d}+\frac{1}{2} \sum_{d \mid n} \mu(d)+\frac{1}{6 n} \sum_{d \mid n} \mu(d) d
$$

Now, for any $n, \sum_{d \mid n} \mu(d) \frac{n}{d}=\phi(n)$. Also, $\sum_{d \mid n} \mu(d)=\mathbf{1}(n)$. So when $n>1$, we get

$$
S(n)=\frac{n^{2} \phi(n)}{3}+\frac{(-1)^{\omega(n)} \phi(n) s(n)}{6} .
$$

10. (a) This follows from the Multiplicative version of Möbius inversion, using $f(n)=\Phi_{n}(x)$ and $x^{n}-1=$ $\prod_{d \mid n} \Phi_{n}(x)=F(n)$.
(b) $F(n)$ is the sum of the roots of the polynomial $x^{n}-1$, so it's equal to the negative of the coefficient of x^{n-1} in $x^{n}-1$. Therefore

$$
F(n)= \begin{cases}0 & \text { if } n>1 \\ 1 & \text { if } n=1 .\end{cases}
$$

(c) Since

$$
\prod_{d \mid n} \Phi_{d}(x)=x^{n}-1,
$$

the sum of the roots of the polynomial $x^{n}-1$ is

$$
F(n)=\sum_{d \mid n} f(d),
$$

where

$$
f(d)=\sum_{\substack{a=1 \\(a, n)=1}}^{n} e^{2 \pi i a / n}
$$

is the sum of the roots of $\Phi_{d}(x)$. Therefore, $f * U=\mathbf{1}$, so by Möbius inversion $f=\mu$.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

