
18.781 Solutions to Problem Set 5

1. Note that 41− 1 = 23 · 5. Start with a quadratic nonresidue mod 41, say, 3. Now b = 35 = 81 · 3 ≡ −3
(mod 41), which has order exactly 8. (−3)−1 ≡ −14 (mod 41).

Now we calculate a square root of 21. First, check that 21 is a square:

21(41−1)/2 = 2120 = 320 · 720 ≡ −1 · 720

≡ −1 · 4910 1 810 230

≡ −220 · 210
≡ − · ≡ −
≡ −1 · 1024

≡ 1 (mod 41).

Next, calculate

2110 ≡ 4415 ≡ (−10)5 ≡ 18 · 18 · (−10)

≡ 324 · (−10) ≡ (−8)(−10)

≡ −1 (mod 41).

So update

A = (21)/(−3)2 ≡ 21 · 142

= 21 · 196 ≡ 21 · (−9)

≡ 16 (mod 41).

Next, since 165 ≡ 220 ≡ 1 (mod 41), there is no need to modify A and b for this step. We’re at the
stage where Aodd ≡ 1 (mod 41), so a square root of A is A(5+1)/2 = 163 ≡ −4 (mod 41). (Note: we
could have guessed a square root of 16 anyway since it’s a perfect square.) Thus, a square root of 21
is given by (−3)(−4) ≡ 12 (mod 41).

Check: 122 = 144 ≡ 21 (mod 41). The other square root of 21 mod 41 is -12.

2. First, observe that (2p− 1)/3 is an integer, and that by Fermat’s Little Theorem(
a(2p−1)/3

)3
= a2p−1

= a(ap−1)2

≡ a (mod p).

Since 3 and p− 1 are coprime, this is the unique cube root of a.

3. (a) Since p - a, we complete the square:

ax2 + bx+ c = a

(
x2

b c
+ x+( a a

2

)
= a

(
b

x+
2a

)
c b2

+
a
−

4a2

)
[( )2

b (b2
= a x+

− 4ac)

2a
−

4a2

]
1

= [(2ax+ b)2 .
a

− (b2 − 4ac)]
4
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Letting y = 2ax + b, the congruence f(x) ≡ 0 (mod p) is equivalent to y2 ≡ D (mod p). If p|D
then obviously y ≡ 0 is the only solution, and thus x ≡ −b/2a. Else, if p - D, then there are either 0
or 2 solutions depending on whether D is or is not a square mod p. Finally, f ′(x0) = 2ax0+b = y0
must be nonzero mod p because its square D is nonzero.

(b) By part (a), x2 ≡ a (mod p) has exactly 1 + (a ) solutions mod p. Since f(x) = x2p − a satisfies
the criterion of Hensel’s Lemma, every solution mod p lifts to a unique solution mod pe. Hence,
the number of solutions mod pe is 1 + (a ) as well.p

4. We use the Chinese Remainder Theorem to decompose each congruence into a system of congruences
with factors of the modulus.

(a) We have 118 = 2 · 59. Now the congruence x2 ≡ −2 ≡ 0 (mod 2) has a unique solution, and
x2 ≡ −2 (mod 59) has two solutions because(

−2

59

)
=

(
−1 2

= ( 1) ( 1) = 1.
59

)(
59

)
− · −

Therefore there are two solutions to the original congruence.

(b) The congruence x2 ≡ −1 (mod 4) has no solutions, so there are no solutions.

(c) We have 365 = 5 · 73. There are two solutions to each of the congruences x2 ≡ −1 (mod 5) and
x2 ≡ −1 (mod 73), so there are 2 · 2 = 4 solutions.

(d) Since 227 is prime, we use quadratic reciprocity:(
7

227

)
= −

(
227

7

)
= −

(
3

7

)
= −(−1) = 1.

So there are two solutions.

(e) We have 789 = 3 · 263. The first congruence, x2 = 267 ≡ 0 (mod 3), has exactly one solution.
The second, x2 = 267 ≡ 4 (mod 263), has two solutions. Thus there are two solutions.

5. Assume p is odd, since if p = 2 this is obvious. If we let x = gk, where g is a primitive root mod p,
then we have g8k ≡ 16 (mod p). This equation has a solution if and only if

1 ≡ 16(p−1)/ gcd(8,p−1)

= 24(p−1)/ gcd(8,p−1) (mod p).

Now if 8 - p− 1, then gcd(8, p− 1) is 2 or 4. It follows that 4(p 1)/ gcd(8, p 1) is a multiple of p 1,
so 24(p−1)/ gcd(8,p

− − −
−1) ≡ 1 (mod p) by Fermat.

On the other hand, if 8|p − 1, then 2 is a quadratic residue mod p, and thus 24(p−1)/ gcd(8,p−1) =
2(p−1)/2 ≡ 1 (mod p).

6. We will argue by contradiction, as in Euclid’s proof. Suppose there are only finitely many such primes,
say, p1, . . . , pn. Let

N = (p1 · · · pn)2 − 2.

First, note that N is odd becauase the p are all odd. Also, since p = 7, we have N ≥ 72i 1 − 2 > 1.
Finally, since odd2 ≡ 1 (mod 8), N ≡ 1− 2 ≡ 7 (mod 8).

Now( N
2
) is divisible only by odd primes, and if p is a prime dividing N then (p1 · · · pn)2 ≡ 2 (mod p),

so = 1. Thus p ≡ ±1 (mod 8). But not all the primes dividing N can be congruent to 1 mod 8,p

as that would force N ≡ 1 (mod 8), so there exists some prime p | N congruent to 7 mod 8. However,
p cannot be one of the pi, because

(pi, N) = (pi, (p1 · · · pN )2 − 2) = (pi, 2) = 1.

Contradiction.
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7. Obviously we need p = 2, 5. Then, by quadratic reciprocity,(
10
) (

2
)(

5
) (

2
)(

p
= =

p p p p 5

)
.

We have (
2

p

)
=

{
+1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8)

and (p
5

)
=

{
+1 if p ≡ ±3 (mod 8)

−1 if p ≡ ±2 (mod 5).

So the product will depend on p mod 40. By direct calculation,(
2
)(

p
) {

+1 if p ≡ ±1,±3,±9,±13 (mod 40)
=

p 5 −1 if p ≡ ±7,±11,±17,±19 (mod 40).

8. (a) Clearly we need p = 3, and everything is a square mod 2, so let’s restrict our attention to primes
greater than 3. Then, by quadratic reciprocity,(

−3
) (

−1 3

p
≡

p

)(
p

p−1

)
3−1 p−1 p

= (−1) 2 (−1) 2 · 2

(
3

=

)
(p

3

)
{

+1 if p 1
=

≡ (mod 3)

−1 if p ≡ −1 (mod 3).

So −3 is a quadratic residue mod p if and only if p = 2 or p ≡ 1 (mod 3).

(b) For primes of the form 3k − 1: Suppose there are finitely many, say, p1, p2, . . . , pn with p1 = 2.
Then we let N = 3p1 · · · pn − 1 and argue as in Euclid’s proof. Since N ≡ −1 (mod 3) and N is
odd, N must be divisible by some odd prime equivalent to −1 (mod 3).

For primes of the form 3k+ 1: Now we use N = (2p 2
1 · · · pn) + 3. Then N is odd, and if p|N , then

−3 ≡ (2p1 · · · pn)2 (mod p) so −3 is a quadratic residue mod p. This implies that p ≡ 1 (mod 3),
and again a Euclid-style proof finishes the argument.

9. (a) The congruence y2 ≡ x2 + k (mod p) is equivalent to (y − x)(y + x) ≡ k (mod p). Let z =
y − x,w = y + x. Note that since p is odd, we can invert this system to solve for x, y:{

x ≡ w−z (mod p)2

y ≡ w+z (mod p).2

So the number of solutions to y2 ≡ x2 + k (mod p) is the same as the number of solutions to
zw ≡ k (mod p). Now we can choose any nonzero value for z and let w = k/z. Therefore there
are exactly p− 1 solutions.

(b) The number of solutions to y2 ≡
2

x2 + k, for a fixed value of x, is 1 + (x +k ). Sop∑p [ ( p
x2 + k x2 + k

p− 1 = 1 + = p+ .
p p

x=1

)]
x

∑
=1

( )
Thus, (

x2 + k

p

)
= −1.
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(c) The number of solutions to ax2 + by2 ≡ 1 (mod p) is∑p [ (
(1− ax2)/b (1

1 +
p

x=1

)]
= p+

∑(
− ax2)/b

p

)
1 ax2 b−1

= p+
∑(

−
p

)(
p

)
= p+

∑(
1− ax2

p

)(
b

p

)
= p+

∑(
x2 − 1/a

)(
−a
)(

b
)

= p+

(
ab

) p p p

−ab
p

·
∑(

x2 − a−1

p

)
= p−

(
−
p

)
,

where the last equality follows from part (a).

10. You should observe that for primes congruent to 1 mod 4, R = N , whereas for primes congruent to 3
mod 4, R > N . When p ≡ 1 (mod 4), R = N follows easily from observing that if x is a quadratic
residue then so is p− x, so the number of quadratic residues in {1, . . . , p−1} must be p

2
−1 , exactly half4

of the total number of quadratic residues. When p ≡ 3 (mod 4), no elementary proof that R > N is
known. (The known proof uses L-functions and Dirichlet’s class number formula.)

11. First, it’s easy to see that all the quadratic residues must lie in S1, because for all x ∈ {1, . . . , p 1 ,
x lies in the same set as itself, so x2

− }
lies in S1. Since S2 is nonempty it must contain some quadratic

nonresidue u (mod p). Moreover, the p−1 elements in the set2 {ur : r a quadratic residue} must all lie
in S2 because u ∈ S2 and r ∈ S1. We’ve now exhausted all the nonzero residue classes of p, so S1

contains all the residues and S2 all the nonresidues.

12. (a) Note that πsi(i) = π(si(i)) = π(i+1), πsi(i+1) = π(si(i+1)) = π(i), and for j = i, i+1 we have
πsi(j) = π(si(j)) = π(j). Now if j, k 6∈ {i, i+ 1} then π(j) = πsi(j) and π(k) = πsi(k) so (j, k) is
an inversion of π if and only if it is an inversion of πsi. So the changes in inversions happen in
one of the following three cases:

Case I: (i, i+ 1)

Case II: (j, i) or (j, i+ 1), where j < i

Case III: (i, k) or (i+ 1, k), where k > i+ 1.

Now for case II, we see that (j, i) is an inversion of π if and only if (j, i + 1) is an inversion of
πsi, and (j, i + 1) is an inversion of π if and only if (j, i) is an inversion of πsi. So the total
number of inversions in case II doesn’t change between π and πsi. Similarly, the total number of
inversions doesn’t change in Case III. Case I only involves one pair (i, i+ 1), and thus the number
of inversions changes by exactly ±1.

(b) We use proof by induction on the number of inversions in the permutation π. If π has no inversions
then π must be the identity, and is thus an empty product of transpositions. So assume π has
k inversions, and we’ve proved the result for all permutations with fewer than k inversions. Let
(i, i+ 1) be an inversion of π. Then πsi has one fewer inversion, so by the inductive hypothesis,
πsi = sj1sj2 · · · sjr is a product of transpositions. Since s2i = 1, we have that π = πs2i = sj1 · · · sjrsi
is also a product of transpositions, completing the induction.

(c) It’s enough to show that sign(πsi) = sign(π)sign(si) for any transposition si and permutation π.
Once we do this, it follows by induction that

sign(s · · · s ) = sign(s ) · · · sign(s ) = (−1)ri1 ir i1 ir ,

so if π = si1 · · · sir and σ = sj1 · · · sjt , then π ◦ σ = si1 · · · sirsj1 · · · sjt and hence sign(π ◦ σ) =
(−1)r+t = sign(π)sign(σ).
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Now by part (a), the number of inversions of πsi is the number of inversions of π plus or minus
1. So if we define f(ρ) to be the number of inversions of a permutation ρ, then

sign(πsi) = (−1)f(πsi)

= (−1)f(π)(−1)±1

= sign(π)sign(si).

(d) The proof is by induction on k. For the base case k = 2, we have the transposition π = (ab)
where we can assume without loss of generality that a < b. Now the number of inversions is
2(b− a− 1) + 1, which is odd, so sign(π) = −1 = (−1)2−1.

Next, consider an arbitrary k-cycle π = (a1 · · · ak). Since π = (a1 · · · ak 1)(a the− k y−1ak), b
inductive hypothesis

sign(π) = (−1)k−2(−1) = (−1)k−1.

This completes the induction. Therefore, for a disjoint product of cycles, the sign is (−1)m, where
m is the number of even-length cycles.
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