18.781 Solutions to Problem Set 5

1. Note that $41-1=2^{3} \cdot 5$. Start with a quadratic nonresidue $\bmod 41$, say, 3 . Now $b=3^{5}=81 \cdot 3 \equiv-3$ $(\bmod 41)$, which has order exactly $8 .(-3)^{-1} \equiv-14(\bmod 41)$.
Now we calculate a square root of 21 . First, check that 21 is a square:

$$
\begin{aligned}
21^{(41-1) / 2} & =21^{20}=3^{20} \cdot 7^{20} \equiv-1 \cdot 7^{20} \\
& \equiv-1 \cdot 49^{10} \equiv-1 \cdot 8^{10} \equiv-2^{30} \\
& \equiv-2^{20} \cdot 2^{10} \equiv-1 \cdot 1024 \\
& \equiv 1 \quad(\bmod 41)
\end{aligned}
$$

Next, calculate

$$
\begin{aligned}
21^{10} & \equiv 441^{5} \equiv(-10)^{5} \equiv 18 \cdot 18 \cdot(-10) \\
& \equiv 324 \cdot(-10) \equiv(-8)(-10) \\
& \equiv-1 \quad(\bmod 41)
\end{aligned}
$$

So update

$$
\begin{aligned}
A & =(21) /(-3)^{2} \equiv 21 \cdot 14^{2} \\
& =21 \cdot 196 \equiv 21 \cdot(-9) \\
& \equiv 16 \quad(\bmod 41)
\end{aligned}
$$

Next, since $16^{5} \equiv 2^{20} \equiv 1(\bmod 41)$, there is no need to modify A and b for this step. We're at the stage where $A^{\text {odd }} \equiv 1(\bmod 41)$, so a square root of A is $A^{(5+1) / 2}=16^{3} \equiv-4(\bmod 41)$. (Note: we could have guessed a square root of 16 anyway since it's a perfect square.) Thus, a square root of 21 is given by $(-3)(-4) \equiv 12(\bmod 41)$.
Check: $12^{2}=144 \equiv 21(\bmod 41)$. The other square root of $21 \bmod 41$ is -12 .
2. First, observe that $(2 p-1) / 3$ is an integer, and that by Fermat's Little Theorem

$$
\begin{aligned}
\left(a^{(2 p-1) / 3}\right)^{3} & =a^{2 p-1} \\
& =a\left(a^{p-1}\right)^{2} \\
& \equiv a \quad(\bmod p)
\end{aligned}
$$

Since 3 and $p-1$ are coprime, this is the unique cube root of a.
3. (a) Since $p \nmid a$, we complete the square:

$$
\begin{aligned}
a x^{2}+b x+c & =a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right) \\
& =a\left(\left(x+\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\frac{b^{2}}{4 a^{2}}\right) \\
& =a\left[\left(x+\frac{b}{2 a}\right)^{2}-\frac{\left(b^{2}-4 a c\right)}{4 a^{2}}\right] \\
& =\frac{1}{4 a}\left[(2 a x+b)^{2}-\left(b^{2}-4 a c\right)\right]
\end{aligned}
$$

Letting $y=2 a x+b$, the congruence $f(x) \equiv 0(\bmod p)$ is equivalent to $y^{2} \equiv D(\bmod p)$. If $p \mid D$ then obviously $y \equiv 0$ is the only solution, and thus $x \equiv-b / 2 a$. Else, if $p \nmid D$, then there are either 0 or 2 solutions depending on whether D is or is not a square $\bmod p$. Finally, $f^{\prime}\left(x_{0}\right)=2 a x_{0}+b=y_{0}$ must be nonzero $\bmod p$ because its square D is nonzero.
(b) By part $(\mathrm{a}), x^{2} \equiv a(\bmod p)$ has exactly $1+\left(\frac{a}{p}\right)$ solutions $\bmod p$. Since $f(x)=x^{2}-a$ satisfies the criterion of Hensel's Lemma, every solution $\bmod p$ lifts to a unique solution mod p^{e}. Hence, the number of solutions $\bmod p^{e}$ is $1+\left(\frac{a}{p}\right)$ as well.
4. We use the Chinese Remainder Theorem to decompose each congruence into a system of congruences with factors of the modulus.
(a) We have $118=2 \cdot 59$. Now the congruence $x^{2} \equiv-2 \equiv 0(\bmod 2)$ has a unique solution, and $x^{2} \equiv-2(\bmod 59)$ has two solutions because

$$
\left(\frac{-2}{59}\right)=\left(\frac{-1}{59}\right)\left(\frac{2}{59}\right)=(-1) \cdot(-1)=1 .
$$

Therefore there are two solutions to the original congruence.
(b) The congruence $x^{2} \equiv-1(\bmod 4)$ has no solutions, so there are no solutions.
(c) We have $365=5 \cdot 73$. There are two solutions to each of the congruences $x^{2} \equiv-1(\bmod 5)$ and $x^{2} \equiv-1(\bmod 73)$, so there are $2 \cdot 2=4$ solutions.
(d) Since 227 is prime, we use quadratic reciprocity:

$$
\left(\frac{7}{227}\right)=-\left(\frac{227}{7}\right)=-\left(\frac{3}{7}\right)=-(-1)=1
$$

So there are two solutions.
(e) We have $789=3 \cdot 263$. The first congruence, $x^{2}=267 \equiv 0(\bmod 3)$, has exactly one solution. The second, $x^{2}=267 \equiv 4(\bmod 263)$, has two solutions. Thus there are two solutions.
5. Assume p is odd, since if $p=2$ this is obvious. If we let $x=g^{k}$, where g is a primitive root mod p, then we have $g^{8 k} \equiv 16(\bmod p)$. This equation has a solution if and only if

$$
\begin{aligned}
1 & \equiv 16^{(p-1) / \operatorname{gcd}(8, p-1)} \\
& =2^{4(p-1) / \operatorname{gcd}(8, p-1)} \quad(\bmod p)
\end{aligned}
$$

Now if $8 \nmid p-1$, then $\operatorname{gcd}(8, p-1)$ is 2 or 4 . It follows that $4(p-1) / \operatorname{gcd}(8, p-1)$ is a multiple of $p-1$, so $2^{4(p-1) / \operatorname{gcd}(8, p-1)} \equiv 1(\bmod p)$ by Fermat.
On the other hand, if $8 \mid p-1$, then 2 is a quadratic residue $\bmod p$, and thus $2^{4(p-1) / \operatorname{gcd}(8, p-1)}=$ $2^{(p-1) / 2} \equiv 1(\bmod p)$.
6. We will argue by contradiction, as in Euclid's proof. Suppose there are only finitely many such primes, say, p_{1}, \ldots, p_{n}. Let

$$
N=\left(p_{1} \cdots p_{n}\right)^{2}-2
$$

First, note that N is odd becauase the p_{i} are all odd. Also, since $p_{1}=7$, we have $N \geq 7^{2}-2>1$. Finally, since odd ${ }^{2} \equiv 1(\bmod 8), N \equiv 1-2 \equiv 7(\bmod 8)$.
Now N is divisible only by odd primes, and if p is a prime dividing N then $\left(p_{1} \cdots p_{n}\right)^{2} \equiv 2(\bmod p)$, so $\left(\frac{2}{p}\right)=1$. Thus $p \equiv \pm 1(\bmod 8)$. But not all the primes dividing N can be congruent to $1 \bmod 8$, as that would force $N \equiv 1(\bmod 8)$, so there exists some prime $p \mid N$ congruent to $7 \bmod 8$. However, p cannot be one of the p_{i}, because

$$
\left(p_{i}, N\right)=\left(p_{i},\left(p_{1} \cdots p_{N}\right)^{2}-2\right)=\left(p_{i}, 2\right)=1
$$

Contradiction.
7. Obviously we need $p \neq 2,5$. Then, by quadratic reciprocity,

$$
\left(\frac{10}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{5}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{p}{5}\right)
$$

We have

$$
\left(\frac{2}{p}\right)=\left\{\begin{array}{ll}
+1 & \text { if } p \equiv \pm 1 \quad(\bmod 8) \\
-1 & \text { if } p \equiv \pm 3
\end{array}(\bmod 8)\right.
$$

and

$$
\left(\frac{p}{5}\right)= \begin{cases}+1 & \text { if } p \equiv \pm 3 \quad(\bmod 8) \\ -1 & \text { if } p \equiv \pm 2 \quad(\bmod 5)\end{cases}
$$

So the product will depend on $p \bmod 40$. By direct calculation,

$$
\left(\frac{2}{p}\right)\left(\frac{p}{5}\right)= \begin{cases}+1 & \text { if } p \equiv \pm 1, \pm 3, \pm 9, \pm 13 \quad(\bmod 40) \\ -1 & \text { if } p \equiv \pm 7, \pm 11, \pm 17, \pm 19 \quad(\bmod 40)\end{cases}
$$

8. (a) Clearly we need $p \neq 3$, and everything is a square mod 2 , so let's restrict our attention to primes greater than 3 . Then, by quadratic reciprocity,

$$
\begin{aligned}
\left(\frac{-3}{p}\right) & \equiv\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right) \\
& =(-1)^{\frac{p-1}{2}}(-1)^{\frac{3-1}{2} \cdot \frac{p-1}{2}}\left(\frac{p}{3}\right) \\
& =\left(\frac{p}{3}\right) \\
& =\left\{\begin{array}{lll}
+1 & \text { if } p \equiv 1 & (\bmod 3) \\
-1 & \text { if } p \equiv-1 & (\bmod 3)
\end{array}\right.
\end{aligned}
$$

So -3 is a quadratic residue $\bmod p$ if and only if $p=2$ or $p \equiv 1(\bmod 3)$.
(b) For primes of the form $3 k-1$: Suppose there are finitely many, say, $p_{1}, p_{2}, \ldots, p_{n}$ with $p_{1}=2$. Then we let $N=3 p_{1} \cdots p_{n}-1$ and argue as in Euclid's proof. Since $N \equiv-1(\bmod 3)$ and N is odd, N must be divisible by some odd prime equivalent to $-1(\bmod 3)$.
For primes of the form $3 k+1$: Now we use $N=\left(2 p_{1} \cdots p_{n}\right)^{2}+3$. Then N is odd, and if $p \mid N$, then $-3 \equiv\left(2 p_{1} \cdots p_{n}\right)^{2}(\bmod p)$ so -3 is a quadratic residue $\bmod p$. This implies that $p \equiv 1(\bmod 3)$, and again a Euclid-style proof finishes the argument.
9. (a) The congruence $y^{2} \equiv x^{2}+k(\bmod p)$ is equivalent to $(y-x)(y+x) \equiv k(\bmod p)$. Let $z=$ $y-x, w=y+x$. Note that since p is odd, we can invert this system to solve for x, y :

$$
\begin{cases}x \equiv \frac{w-z}{2} & (\bmod p) \\ y \equiv \frac{w+z}{2} & (\bmod p)\end{cases}
$$

So the number of solutions to $y^{2} \equiv x^{2}+k(\bmod p)$ is the same as the number of solutions to $z w \equiv k(\bmod p)$. Now we can choose any nonzero value for z and let $w=k / z$. Therefore there are exactly $p-1$ solutions.
(b) The number of solutions to $y^{2} \equiv x^{2}+k$, for a fixed value of x, is $1+\left(\frac{x^{2}+k}{p}\right)$. So

$$
p-1=\sum_{x=1}^{p}\left[1+\left(\frac{x^{2}+k}{p}\right)\right]=p+\sum_{x=1}^{p}\left(\frac{x^{2}+k}{p}\right)
$$

Thus,

$$
\sum\left(\frac{x^{2}+k}{p}\right)=-1
$$

(c) The number of solutions to $a x^{2}+b y^{2} \equiv 1(\bmod p)$ is

$$
\begin{aligned}
\sum_{x=1}^{p}\left[1+\left(\frac{\left(1-a x^{2}\right) / b}{p}\right)\right] & =p+\sum\left(\frac{\left(1-a x^{2}\right) / b}{p}\right) \\
& =p+\sum\left(\frac{1-a x^{2}}{p}\right)\left(\frac{b^{-1}}{p}\right) \\
& =p+\sum\left(\frac{1-a x^{2}}{p}\right)\left(\frac{b}{p}\right) \\
& =p+\sum\left(\frac{x^{2}-1 / a}{p}\right)\left(\frac{-a}{p}\right)\left(\frac{b}{p}\right) \\
& =p+\left(\frac{-a b}{p}\right) \cdot \sum\left(\frac{x^{2}-a^{-1}}{p}\right) \\
& =p-\left(\frac{-a b}{p}\right),
\end{aligned}
$$

where the last equality follows from part (a).
10. You should observe that for primes congruent to $1 \bmod 4, R=N$, whereas for primes congruent to 3 $\bmod 4, R>N$. When $p \equiv 1(\bmod 4), R=N$ follows easily from observing that if x is a quadratic residue then so is $p-x$, so the number of quadratic residues in $\left\{1, \ldots, \frac{p-1}{2}\right\}$ must be $\frac{p-1}{4}$, exactly half of the total number of quadratic residues. When $p \equiv 3(\bmod 4)$, no elementary proof that $R>N$ is known. (The known proof uses L-functions and Dirichlet's class number formula.)
11. First, it's easy to see that all the quadratic residues must lie in S_{1}, because for all $x \in\{1, \ldots, p-1\}$, x lies in the same set as itself, so x^{2} lies in S_{1}. Since S_{2} is nonempty it must contain some quadratic nonresidue $u(\bmod p)$. Moreover, the $\frac{p-1}{2}$ elements in the set $\{u r: r$ a quadratic residue $\}$ must all lie in S_{2} because $u \in S_{2}$ and $r \in S_{1}$. We've now exhausted all the nonzero residue classes of p, so S_{1} contains all the residues and S_{2} all the nonresidues.
12. (a) Note that $\pi s_{i}(i)=\pi\left(s_{i}(i)\right)=\pi(i+1), \pi s_{i}(i+1)=\pi\left(s_{i}(i+1)\right)=\pi(i)$, and for $j \neq i, i+1$ we have $\pi s_{i}(j)=\pi\left(s_{i}(j)\right)=\pi(j)$. Now if $j, k \notin\{i, i+1\}$ then $\pi(j)=\pi s_{i}(j)$ and $\pi(k)=\pi s_{i}(k)$ so (j, k) is an inversion of π if and only if it is an inversion of πs_{i}. So the changes in inversions happen in one of the following three cases:
Case I: $(i, i+1)$
Case II: (j, i) or $(j, i+1)$, where $j<i$
Case III: (i, k) or $(i+1, k)$, where $k>i+1$.
Now for case II, we see that (j, i) is an inversion of π if and only if $(j, i+1)$ is an inversion of πs_{i}, and $(j, i+1)$ is an inversion of π if and only if (j, i) is an inversion of πs_{i}. So the total number of inversions in case II doesn't change between π and πs_{i}. Similarly, the total number of inversions doesn't change in Case III. Case I only involves one pair $(i, i+1)$, and thus the number of inversions changes by exactly ± 1.
(b) We use proof by induction on the number of inversions in the permutation π. If π has no inversions then π must be the identity, and is thus an empty product of transpositions. So assume π has k inversions, and we've proved the result for all permutations with fewer than k inversions. Let $(i, i+1)$ be an inversion of π. Then πs_{i} has one fewer inversion, so by the inductive hypothesis, $\pi s_{i}=s_{j_{1}} s_{j_{2}} \cdots s_{j_{r}}$ is a product of transpositions. Since $s_{i}^{2}=1$, we have that $\pi=\pi s_{i}^{2}=s_{j_{1}} \cdots s_{j_{r}} s_{i}$ is also a product of transpositions, completing the induction.
(c) It's enough to show that $\operatorname{sign}\left(\pi s_{i}\right)=\operatorname{sign}(\pi) \operatorname{sign}\left(s_{i}\right)$ for any transposition s_{i} and permutation π. Once we do this, it follows by induction that

$$
\operatorname{sign}\left(s_{i_{1}} \cdots s_{i_{r}}\right)=\operatorname{sign}\left(s_{i_{1}}\right) \cdots \operatorname{sign}\left(s_{i_{r}}\right)=(-1)^{r}
$$

so if $\pi=s_{i_{1}} \cdots s_{i_{r}}$ and $\sigma=s_{j_{1}} \cdots s_{j_{t}}$, then $\pi \circ \sigma=s_{i_{1}} \cdots s_{i_{r}} s_{j_{1}} \cdots s_{j_{t}}$ and hence $\operatorname{sign}(\pi \circ \sigma)=$ $(-1)^{r+t}=\operatorname{sign}(\pi) \operatorname{sign}(\sigma)$.

Now by part (a), the number of inversions of πs_{i} is the number of inversions of π plus or minus 1. So if we define $f(\rho)$ to be the number of inversions of a permutation ρ, then

$$
\begin{aligned}
\operatorname{sign}\left(\pi s_{i}\right) & =(-1)^{f\left(\pi s_{i}\right)} \\
& =(-1)^{f(\pi)}(-1)^{ \pm 1} \\
& =\operatorname{sign}(\pi) \operatorname{sign}\left(s_{i}\right)
\end{aligned}
$$

(d) The proof is by induction on k. For the base case $k=2$, we have the transposition $\pi=(a b)$ where we can assume without loss of generality that $a<b$. Now the number of inversions is $2(b-a-1)+1$, which is odd, so $\operatorname{sign}(\pi)=-1=(-1)^{2-1}$.
Next, consider an arbitrary k-cycle $\pi=\left(a_{1} \cdots a_{k}\right)$. Since $\pi=\left(a_{1} \cdots a_{k-1}\right)\left(a_{k-1} a_{k}\right)$, by the inductive hypothesis

$$
\operatorname{sign}(\pi)=(-1)^{k-2}(-1)=(-1)^{k-1}
$$

This completes the induction. Therefore, for a disjoint product of cycles, the sign is $(-1)^{m}$, where m is the number of even-length cycles.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

