18.781 Solutions to Problem Set 4, Part 2

1. (a) To find a primitive root mod 23 , we use trial and error. Since $\phi(23)=22$, for a to be a primitive root we just need to check that $a^{2} \not \equiv 1(\bmod 23)$ and $a^{11} \not \equiv 1(\bmod 23)$.

$$
2^{11}=2^{5} \cdot 2^{5} \cdot 2 \equiv 9 \cdot 9 \cdot 2 \equiv-11 \cdot 2 \equiv 1 \quad(\bmod 23)
$$

so 2 doesn't work.

$$
3^{11} \equiv 3^{3} \cdot 3^{3} \cdot 3^{3} \cdot 9 \equiv 4^{3} \cdot 9 \equiv-5 \cdot 9 \equiv 1 \quad(\bmod 23),
$$

so 3 doesn't work either.

$$
5^{11} \equiv\left(5^{2}\right)^{5} \cdot 5 \equiv 2^{5} \cdot 5 \equiv 9 \cdot 5 \equiv-1 \quad(\bmod 23)
$$

and $5^{2} \equiv 2(\bmod 23)$, so 5 is a primitve root $\bmod 23$.
Now by the proof of existence of primitive roots mod p^{2}, using Hensel's lemma, only one lift of 5 will fail to be a primitive root $\bmod 23^{2}$. We need to check whether $5^{22} \equiv 1\left(\bmod 23^{2}\right)$:

$$
\begin{aligned}
5^{22} & =\left(5^{5}\right)^{4} \cdot 5^{2} \equiv(3125)^{4} \cdot 25 \\
& \equiv(-49)^{4} \cdot 25 \equiv(2401)^{2} \cdot 25 \\
& \equiv 288 \cdot 25 \equiv 323 \quad(\bmod 529)
\end{aligned}
$$

So 5 is a primitive root $\bmod 529$.
(b) We have that

$$
3^{8} \equiv\left(3^{4}\right)^{2} \equiv(-4)^{2} \equiv-1 \quad(\bmod 17)
$$

Now the order of $3 \bmod 17$ must divide $\phi(17)=16$, and thus must be a power of 2 . Clearly the order must be greater than 8 , since otherwise the order would divide 8 and we would have $3^{8} \equiv 1$ $(\bmod 17)$. So the order of $3 \bmod 17$ is exactly 16 , which implies that 3 is a primitive root mod 17.
2. Since $2^{m}-1$ and $2^{n}+1$ are odd, any prime p dividing both must be an odd prime. We have $2^{m} \equiv 1$ $(\bmod p)$ and $2^{n} \equiv-1(\bmod p)$, so the order of $2 \bmod p$, say, h, divides m and is thus odd. But since $2^{2 n} \equiv\left(2^{n}\right)^{2} \equiv 1(\bmod p), h$ must also divide n, so $2^{n} \equiv-1 \equiv 1(\bmod p)$, contradiction. Therefore $\operatorname{gcd}\left(2^{m}-1,2^{n}+1\right)$ can't have any prime divisors, so it must equal 1.
3. If k is not a power of 2 , then some odd prime p divides k. Letting $k=m p$, we have

$$
\begin{aligned}
a^{k}+1 & =a^{m p}+1 \\
& =\left(a^{m}+1\right)\left(a^{m(p-1)}-a^{m(p-2)}+\cdots-a^{m}+1\right)
\end{aligned}
$$

It's easy to see that $1<a^{m}+1<a^{k}+1$, so $a^{k}+1$ must be composite. Therefore for $a^{k}+1$ to be prime, k must be a power of 2 .
Now if $p \mid a^{2^{n}}+1$ and $p \neq 2$ then p is odd, and $a^{2^{n}} \equiv-1(\bmod p)$ implies that $a^{2^{n+1}} \equiv 1(\bmod p)$. Note that $(a, p)=1$. So the order of $a \bmod p$, say, h, divides 2^{n+1} and is thus a power of 2 . But h cannot be less than or equal to 2^{n}, else we would have $2^{2 n} \equiv-1 \equiv 1(\bmod p)$, contradicting the assumption that p is odd. Therefore, $h=2^{n+1}$. Then by Fermat's Little Theorem we have $2^{n+1} \mid p-1$, i.e., $p \equiv 1$ $\left(\bmod 2^{n+1}\right)$.
4. Since $a^{n-1} \equiv 1(\bmod n)$, it follows immediately that $\operatorname{gcd}(a, n)=1$. Let h be the order of $a \bmod$ n. By definition h is the smallest positive integer such that $a^{h} \equiv 1(\bmod n)$, so $h=n-1$. Now Euler's theorem implies that $a^{\phi(n)} \equiv 1(\bmod n)$. Thus, $h=n-1 \mid \phi(n)$, which in particular means that $n-1 \leq \phi(n)$. But since $n>1$, we know that $\phi(n)$ is the number of elements in $\{1, \ldots, n-1\}$ which are coprime to n, so $\phi(n) \leq n-1$. Hence $\phi(n)=n-1$ and n is coprime to $1,2, \ldots, n-1$. Therefore, n must be prime.
5. We'll first show that if $a \equiv b(\bmod p(p-1))$, then $a^{a} \equiv b^{b}(\bmod p)$. If a and b are both equivalent to $0 \bmod p$ then $a^{a} \equiv b^{b} \equiv 0(\bmod p)$ is clear, since a and b are positive integers. So assume a, and thus b as well, is coprime to p. Writing $b=a+t p(p-1)$, we have

$$
\begin{aligned}
b^{b} & =(a+t p(p-1))^{a+t p(p-1)} \\
& \equiv a^{a+t p(p-1)} \\
& \equiv a^{a} \cdot\left(a^{p-1}\right)^{t p} \\
& \equiv a^{a} \cdot(1)^{t p} \\
& \equiv a^{a} \quad(\bmod p) .
\end{aligned}
$$

Now let the period of the sequence be h. From the above proof, h divides $p(p-1)$. We know that $a^{a} \equiv(a+t h)^{a+t h}(\bmod p)$ for all positive integers a, t. If we set $a=p$ and $t=1$ we get $p^{p} \equiv(p+h)^{p+h}$ $(\bmod p)$, which forces $h \equiv 0(\bmod p)$. So letting $h=k p$, we have

$$
a^{a} \equiv(a+t k p)^{a+t k p} \equiv a^{a+t k p} \quad(\bmod p)
$$

for every pair of positive integers a, t. If we take a to be a primitive root $g \bmod p$ and again set $t=1$, we get that $g^{k p} \equiv 1(\bmod p)$, so $p-1 \mid k p$. Furthermore, $p-1 \mid k$ because $\operatorname{gcd}(p-1, p)=1$. Therefore, $h=k p$ is divisible by $(p-1) p$. Since h also divides $p(p-1)$, it follows that $h=p(p-1)$.
6. We can assume that $0<a<q$, otherwise divide out a / q and reset a as the remainder. Now if k is the order of $10 \bmod q$ then $q \mid 10^{k}-1$, so let $10^{k}-1=m q$ for some positive integer m. Then

$$
\begin{aligned}
\frac{a}{q} & =\frac{10^{k} a}{10^{k} q} \\
& =\frac{a\left(10^{k}-1+1\right)}{10^{k} q} \\
& =\frac{a\left(10^{k}-1\right)}{10^{k} q}+\frac{a}{10^{k} q} \\
& =\frac{a m}{10^{k}}+\frac{a}{10^{k} q}
\end{aligned}
$$

Now note that $0<a m<q m \leq 10^{m}-1$. So $\frac{a m}{10^{k}}$ has a finite decimal expansion $0 . m_{1} m_{2} \cdots m_{k}$ with k digits, and since the decimal expansion of $\frac{a}{10^{k} q}$ is just that of $\frac{a}{q}$ but shifted k digits to the right by adding k zeroes at the beginning, it's clear that $\frac{a}{q}$ will have the decimal expansion $0 . m_{1} \cdots m_{k} m_{1} \cdots m_{k} m_{1} \cdots m_{k} \cdots$. So the smallest period is a divisor of k. To show it's exactly k, suppose that $a / q=0 . r_{1} \cdots r_{l} n_{1} \cdots n_{h} n_{1} \cdots n_{h} \cdots$, where h divides k. Multiplying by 10^{l}, we get

$$
\frac{10^{l} a}{q}=r_{1} \cdots r_{l} . n_{1} \cdots n_{h} n_{1} \cdots n_{h} \cdots
$$

Subtracting off the integer part and replacing a by the remainder of $10^{l} a \bmod q$ (which doesn't change the fact that $(a, q)=1)$,

$$
\frac{a}{q}=0 . n_{1} \cdots n_{h} n_{1} \cdots n_{h} \cdots
$$

If n is the integer with decimal expansion $n_{1} \cdots n_{h}$, this equation says $a / q=n /\left(10^{h}-1\right)$. Then $\left(10^{h}-1\right) a=n q$, so $a\left(10^{h}-1\right) \equiv 0(\bmod p)$. By definition of k, we must have $k \mid h$. Therefore $k=h$, finishing the proof.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

