
18.781 Solutions to Problem Set 4, Part 1

1. (a) If x is a cube root of 1 then x3 1 (mod 1024). Obviously x must be coprime to 1024, so
xφ(1024)

≡
= x512 ≡ 1 (mod 1024) by Fermat. Since 3 and 512 are coprime, and the order of x mod

1024 divides both, it must be 1. Therefore x ≡ 1 (mod 1024).

(b) By part (a), if a cube root of −3 exists, it must be unique (if x, y are both cube roots of −3 mod
1024, then (xy−1)3 ≡ 1 (mod 1024) so x ≡ y). Now 53 = 125 ≡ −3 (mod 128). Note that the
derivative of x3 + 3 is 3x2, and 3 · 52 6≡ 0 (mod 2). We have f(5) = (3 · 52)−1 ≡ 1 (mod 2).

Lifting to a cube root mod 256, we get 5− 128 ≡ 5 + 128 ≡ 133 (mod 256). Now

1333 = (5 + 128)3 ≡ 53 + 3 · 52 · 128 ≡ −3 + 76 · 128 ≡ −3 (mod 512),

so we don’t need to modify 133 mod 512.

Mod 1024, we have

1333 ≡ −3 + 76 · 128 ≡ −3 + 39 · 512 ≡ −3 + 512 (mod 1024),

so the solution is 133− 512 ≡ 133 + 512 ≡ 645 (mod 1024).

(c) First, working mod 3, it’s easy to see that the only solution is x ≡ 1 (mod 3). Now f ′(1) =
5 + 4 ≡ 0 (mod 3), so it’s not a nonsingular solution and we can’t apply Hensel’s lemma. But the
proof of Hensel’s lemma (by Taylor series expansion) tells us that mod 9, all the lifts of 1 (i.e., 1,
4, 7) will have the same value when plugged into f mod 9. We also know that any solution mod
9 must be a solution mod 3. Since f(1) = 3 6≡ 0 (mod 9), there is no solution mod 9, and thus
none mod 81.

2. See gp file for the code. The factor 531793 is found. (Some other factors obtained from running Pollard
rho on the quotient are 5684759 and 18207494497.)

3. If we know N = pq and φ(N) = (p − 1)(q − 1), then we know p + q = N − φ(N) − 1. So p and q are
the roots of x2 −Mx+N for some integer M , which we can solve by the quadratic formula.

4. Let f(a) = tpj where t is an integer. Then, by the Taylor series expansion,

f(b) = f(a− tpjf ′(a))

f ′′(a)
= f(a)− tpjf ′(a)f ′(a) + (tpjf ′(a))2 +

2
· · ·

Since the coefficients f ′′(a)/2, etc. are all integers,

f(b) ≡ f(a)− tpjf ′(a)f ′(a)

≡ tpj − tpjf ′(a)f ′(a)

≡ tpj(1− f ′(a)f ′(a)) (mod p2j).

Now by definition, f ′(a)f ′(a) ≡ 1 (mod pj). So the product on the RHS is divisible by p2j . Therefore
f(b) ≡ 0 (mod p2j), as desired.

1



5. (a) Remember that we have

xp−1 − 1 ≡ (x− 1)(x− 2) · · · (x
p 1 p 2

− p+ 1) (mod p)

= x − − σ1x − + σ2x
p−3 − · · · − σp−2x+ σp−1.

So since the coefficients of x, x2, . . . , xp−2 on the LHS are all 0, we must have that σ1, σ2, . . . , σp−2
are all congruent to 0 mod p.

(b) Plugging x = p into

(x− 1) · · · (x− p+ 1) = xp−1 − σ1xp−2 + · · ·+ σp−1,

we get (p− 1)! = pp−1− σ1pp−2 + · · ·+ σp−3p
2− σp−2p+ σp−1. Now σp−1 = (p− 1)!, the product

of the roots. So we cancel it with the (p− 1)! from the LHS and divide by p to get

0 = pp−2 − σ1pp−3 + · · ·+ σp−3p− σp−2.

Since p ≥ 5 and σ1, . . . , σp 3 are all divisible by p by part (a), we see that p2 divides all the terms−
on the RHS except possibly σp 2. But since the terms sum to zero, it follows that p2 divides σ− p−2
as well.

6. Consider the p − 1 congruence classes 1, g, . . . , gp−2 mod p. These are all distinct, or else we would
have gi ≡ gj for some 0 ≤ i < j ≤ p− 2 and then gj−i ≡ 1 (mod p), contradicting the fact that g is a
primitive root. Furthermore, they are all coprime to p. So they must be 1, 2, . . . , p− 1 in some order.
Therefore

Sk = 1k + · · ·+ (p− 1)k = 1k + gk + g2k + · · ·+ g(p−2)k.

If p− 1 divides k then each term is congruent to 1, so the sum is congruent to p− 1. Otherwise

g(p−1)k
Sk =

− 1
d

k − 1
≡ 0 (mo p),

g

since the numerator is g(p−1)k − 1 ≡ 1k − 1 ≡ 0 (mod p), but the denominator is gk − 1 6≡ 0 (mod p),
since g has order p− 1 and by assumption p− 1 |k. So

1k
1 if p 1 k

+ 2k +
−· ·+ (p− 1)k

{
− |· ≡

0 if p− 1 6| k.

7. (a) We know
xp − x ≡ x(x− 1) · · · (x− p+ 1) (mod p),

so σ1, . . . , σp 2, σp ≡ 0 (mod p) while σp 1 ≡ −1 (mod p). It can be easily shown by induction− −
that for k = 1, . . . , p − 2, Sk ≡ 0 (mod p). (The inductive step is using Newton’s identity
kσk = S1σ

k
k 1 − S2σ

2 k
k 2 + · · ·+ (−1) − Sk 1σ1 + (−1) Sk and noting that all terms on the LHS− − −

and RHS except for (−1)kSk are congruent to 0). Then, for k = p − 1, we get (p
p

− 1)σp−1 ≡
0 + · · ·+ 0 + (−1) −2Sp−1, so Sp−1 ≡ −1 (mod p). Indeed, this checks with Fermat since

0p−1 + 1p−1 + · · ·+ (p− 1)p−1 ≡ 0 + 1︸ + ·︷︷· ·+ 1

p−1 times

≡ p− 1

︸
≡ −1 (mod p).

Finally, for k = p, we get

pσp = S1σp−1 + 0 + · · ·+ 0 + (−1)p−1Sp.

So Sp 0 (mod p) as well. These results agree with Problem 6.
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(b) Let x1, . . . , xn be the n variables. Suppose that for some values of x1, . . . , xn, we have f(x1, . . . , xn) ≡
0. Then 1 − f(x p

1, . . . , xn) ≡ 1 (mod p). On the other hand, if f(x1, . . . , xn) 6≡ 0 (mod p), then
by Fermat’s Little Theorem f(x1, . . . , xn)p−1 ≡ 1 (mod p), so 1− f(x1, . . . , x

p
n) −1 ≡ 0 (mod p).

Therefore, the function 1 − f(x)p−1 equals 1 if x is a root, 0 mod p if x is not a root. So the
number of roots, mod p, is∑

[1− f(a a p 1 n
1, . . . , n) − ] = p −

∑
f(a1, . . . , an)p−1

a1,...,an a1,...,an

≡ −
∑

f(a1, . . . , a
p

n) −1 (mod p).
a1,...,an

T∑o show that the number of roots is equivalent to 0 (mod p), it’s enough to see that this sum
f(a1, . . . , an)p−1 vanishes mod p. Now f has total degree d < n, i.e., each monomial of f has

degree d < n. So for each monomial xe11 · · ·xenn of fp−1, we have e1 + · · · + en < (p − 1)n. This
implies that some ei must be less than p − 1. Now, if we can show that for any monomial M
appearing in fp−1, ∑

M(a1, . . . , an) ≡ 0 (mod p),
a1,...,an

then we’re done by linearity. But we have

M
a1

∑
(a1, . . . , an) =

,...,an a1

n

∑
ae11 · · · aenn

,...,an

=
∏(∑

aeii

)
,

i=1 ai

where∑ the sum runs from 0 through∏ ∑p− 1 for each i. Now if some ei < p 1 then by Problem 6,
aei

−
i ≡ 0 (mod p). Therefore ( aeii ) ≡ 0 (mod p) for every monomial, proving our result.

When f has no constant term, the number of roots is a multiple of p, and it is positive since
(0, . . . , 0) is a root. So there are at least p roots. This implies there must be a nontrivial root as
well.
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