18.781 Solutions to Problem Set 4, Part 1

1. (a) If x is a cube root of 1 then $x^{3} \equiv 1(\bmod 1024)$. Obviously x must be coprime to 1024 , so $x^{\phi(1024)}=x^{512} \equiv 1(\bmod 1024)$ by Fermat. Since 3 and 512 are coprime, and the order of $x \bmod$ 1024 divides both, it must be 1 . Therefore $x \equiv 1(\bmod 1024)$.
(b) By part (a), if a cube root of -3 exists, it must be unique (if x, y are both cube roots of $-3 \bmod$ 1024, then $\left(x y^{-1}\right)^{3} \equiv 1(\bmod 1024)$ so $\left.x \equiv y\right)$. Now $5^{3}=125 \equiv-3(\bmod 128)$. Note that the derivative of $x^{3}+3$ is $3 x^{2}$, and $3 \cdot 5^{2} \not \equiv 0(\bmod 2)$. We have $\overline{f(5)}=\left(3 \cdot 5^{2}\right)^{-1} \equiv 1(\bmod 2)$.
Lifting to a cube root $\bmod 256$, we get $5-128 \equiv 5+128 \equiv 133(\bmod 256)$. Now

$$
133^{3}=(5+128)^{3} \equiv 5^{3}+3 \cdot 5^{2} \cdot 128 \equiv-3+76 \cdot 128 \equiv-3 \quad(\bmod 512),
$$

so we don't need to modify $133 \bmod 512$.
Mod 1024, we have

$$
133^{3} \equiv-3+76 \cdot 128 \equiv-3+39 \cdot 512 \equiv-3+512 \quad(\bmod 1024),
$$

so the solution is $133-512 \equiv 133+512 \equiv 645(\bmod 1024)$.
(c) First, working mod 3 , it's easy to see that the only solution is $x \equiv 1(\bmod 3)$. Now $f^{\prime}(1)=$ $5+4 \equiv 0(\bmod 3)$, so it's not a nonsingular solution and we can't apply Hensel's lemma. But the proof of Hensel's lemma (by Taylor series expansion) tells us that mod 9 , all the lifts of 1 (i.e., 1, 4,7) will have the same value when plugged into $f \bmod 9$. We also know that any solution mod 9 must be a solution $\bmod 3$. Since $f(1)=3 \not \equiv 0(\bmod 9)$, there is no solution mod 9 , and thus none mod 81 .
2. See gp file for the code. The factor 531793 is found. (Some other factors obtained from running Pollard rho on the quotient are 5684759 and 18207494497.)
3. If we know $N=p q$ and $\phi(N)=(p-1)(q-1)$, then we know $p+q=N-\phi(N)-1$. So p and q are the roots of $x^{2}-M x+N$ for some integer M, which we can solve by the quadratic formula.
4. Let $f(a)=t p^{j}$ where t is an integer. Then, by the Taylor series expansion,

$$
\begin{aligned}
f(b) & =f\left(a-t p^{j} \overline{f^{\prime}(a)}\right) \\
& =f(a)-t p^{j} \overline{f^{\prime}(a)} f^{\prime}(a)+\frac{f^{\prime \prime}(a)}{2}\left(t p^{j} \overline{f^{\prime}(a)}\right)^{2}+\cdots
\end{aligned}
$$

Since the coefficients $f^{\prime \prime}(a) / 2$, etc. are all integers,

$$
\begin{aligned}
f(b) & \equiv f(a)-t p^{j} \overline{f^{\prime}(a)} f^{\prime}(a) \\
& \equiv t p^{j}-t p^{j} \overline{f^{\prime}(a)} f^{\prime}(a) \\
& \equiv t p^{j}\left(1-\overline{f^{\prime}(a)} f^{\prime}(a)\right) \quad\left(\bmod p^{2 j}\right) .
\end{aligned}
$$

Now by definition, $\overline{f^{\prime}(a)} f^{\prime}(a) \equiv 1\left(\bmod p^{j}\right)$. So the product on the RHS is divisible by $p^{2 j}$. Therefore $f(b) \equiv 0\left(\bmod p^{2 j}\right)$, as desired.
5. (a) Remember that we have

$$
\begin{aligned}
x^{p-1}-1 & \equiv(x-1)(x-2) \cdots(x-p+1) \quad(\bmod p) \\
& =x^{p-1}-\sigma_{1} x^{p-2}+\sigma_{2} x^{p-3}-\cdots-\sigma_{p-2} x+\sigma_{p-1} .
\end{aligned}
$$

So since the coefficients of $x, x^{2}, \ldots, x^{p-2}$ on the LHS are all 0 , we must have that $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p-2}$ are all congruent to $0 \bmod p$.
(b) Plugging $x=p$ into

$$
(x-1) \cdots(x-p+1)=x^{p-1}-\sigma_{1} x^{p-2}+\cdots+\sigma_{p-1}
$$

we get $(p-1)!=p^{p-1}-\sigma_{1} p^{p-2}+\cdots+\sigma_{p-3} p^{2}-\sigma_{p-2} p+\sigma_{p-1}$. Now $\sigma_{p-1}=(p-1)!$, the product of the roots. So we cancel it with the $(p-1)$! from the LHS and divide by p to get

$$
0=p^{p-2}-\sigma_{1} p^{p-3}+\cdots+\sigma_{p-3} p-\sigma_{p-2}
$$

Since $p \geq 5$ and $\sigma_{1}, \ldots, \sigma_{p-3}$ are all divisible by p by part (a), we see that p^{2} divides all the terms on the RHS except possibly σ_{p-2}. But since the terms sum to zero, it follows that p^{2} divides σ_{p-2} as well.
6. Consider the $p-1$ congruence classes $1, g, \ldots, g^{p-2} \bmod p$. These are all distinct, or else we would have $g^{i} \equiv g^{j}$ for some $0 \leq i<j \leq p-2$ and then $g^{j-i} \equiv 1(\bmod p)$, contradicting the fact that g is a primitive root. Furthermore, they are all coprime to p. So they must be $1,2, \ldots, p-1$ in some order. Therefore

$$
S_{k}=1^{k}+\cdots+(p-1)^{k}=1^{k}+g^{k}+g^{2 k}+\cdots+g^{(p-2) k}
$$

If $p-1$ divides k then each term is congruent to 1 , so the sum is congruent to $p-1$. Otherwise

$$
S_{k}=\frac{g^{(p-1) k}-1}{g^{k}-1} \equiv 0 \quad(\bmod p)
$$

since the numerator is $g^{(p-1) k}-1 \equiv 1^{k}-1 \equiv 0(\bmod p)$, but the denominator is $g^{k}-1 \not \equiv 0(\bmod p)$, since g has order $p-1$ and by assumption $p-1 \nless k$. So

$$
1^{k}+2^{k}+\cdots+(p-1)^{k} \equiv \begin{cases}-1 & \text { if } p-1 \mid k \\ 0 & \text { if } p-1 \mid / k\end{cases}
$$

7. (a) We know

$$
x^{p}-x \equiv x(x-1) \cdots(x-p+1) \quad(\bmod p)
$$

so $\sigma_{1}, \ldots, \sigma_{p-2}, \sigma_{p} \equiv 0(\bmod p)$ while $\sigma_{p-1} \equiv-1(\bmod p)$. It can be easily shown by induction that for $k=1, \ldots, p-2, S_{k} \equiv 0(\bmod p)$. (The inductive step is using Newton's identity $k \sigma_{k}=S_{1} \sigma_{k-1}-S_{2} \sigma_{k-2}+\cdots+(-1)^{k-2} S_{k-1} \sigma_{1}+(-1)^{k} S_{k}$ and noting that all terms on the LHS and RHS except for $(-1)^{k} S_{k}$ are congruent to 0). Then, for $k=p-1$, we get $(p-1) \sigma_{p-1} \equiv$ $0+\cdots+0+(-1)^{p-2} S_{p-1}$, so $S_{p-1} \equiv-1(\bmod p)$. Indeed, this checks with Fermat since

$$
\begin{aligned}
0^{p-1}+1^{p-1}+\cdots+(p-1)^{p-1} & \equiv 0+\underbrace{1+\cdots+1}_{p-1 \text { times }} \\
& \equiv p-1 \\
& \equiv-1 \quad(\bmod p)
\end{aligned}
$$

Finally, for $k=p$, we get

$$
p \sigma_{p}=S_{1} \sigma_{p-1}+0+\cdots+0+(-1)^{p-1} S_{p}
$$

So $S_{p} \equiv 0(\bmod p)$ as well. These results agree with Problem 6.
(b) Let x_{1}, \ldots, x_{n} be the n variables. Suppose that for some values of x_{1}, \ldots, x_{n}, we have $f\left(x_{1}, \ldots, x_{n}\right) \equiv$ 0 . Then $1-f\left(x_{1}, \ldots, x_{n}\right)^{p} \equiv 1(\bmod p)$. On the other hand, if $f\left(x_{1}, \ldots, x_{n}\right) \not \equiv 0(\bmod p)$, then by Fermat's Little Theorem $f\left(x_{1}, \ldots, x_{n}\right)^{p-1} \equiv 1(\bmod p)$, so $1-f\left(x_{1}, \ldots, x_{n}\right)^{p-1} \equiv 0(\bmod p)$. Therefore, the function $1-f(x)^{p-1}$ equals 1 if x is a root, $0 \bmod p$ if x is not a root. So the number of roots, $\bmod p$, is

$$
\begin{aligned}
\sum_{a_{1}, \ldots, a_{n}}\left[1-f\left(a_{1}, \ldots, a_{n}\right)^{p-1}\right] & =p^{n}-\sum_{a_{1}, \ldots, a_{n}} f\left(a_{1}, \ldots, a_{n}\right)^{p-1} \\
& \equiv-\sum_{a_{1}, \ldots, a_{n}} f\left(a_{1}, \ldots, a_{n}\right)^{p-1} \quad(\bmod p)
\end{aligned}
$$

To show that the number of roots is equivalent to $0(\bmod p)$, it's enough to see that this sum $\sum f\left(a_{1}, \ldots, a_{n}\right)^{p-1}$ vanishes mod p. Now f has total degree $d<n$, i.e., each monomial of f has degree $d<n$. So for each monomial $x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$ of f^{p-1}, we have $e_{1}+\cdots+e_{n}<(p-1) n$. This implies that some e_{i} must be less than $p-1$. Now, if we can show that for any monomial M appearing in f^{p-1},

$$
\sum_{a_{1}, \ldots, a_{n}} M\left(a_{1}, \ldots, a_{n}\right) \equiv 0 \quad(\bmod p)
$$

then we're done by linearity. But we have

$$
\begin{aligned}
\sum_{a_{1}, \ldots, a_{n}} M\left(a_{1}, \ldots, a_{n}\right) & =\sum_{a_{1}, \ldots, a_{n}} a_{1}^{e_{1}} \cdots a_{n}^{e_{n}} \\
& =\prod_{i=1}^{n}\left(\sum_{a_{i}} a_{i}^{e_{i}}\right),
\end{aligned}
$$

where the sum runs from 0 through $p-1$ for each i. Now if some $e_{i}<p-1$ then by Problem 6 , $\sum a_{i}^{e_{i}} \equiv 0(\bmod p)$. Therefore $\prod\left(\sum a_{i}^{e_{i}}\right) \equiv 0(\bmod p)$ for every monomial, proving our result. When f has no constant term, the number of roots is a multiple of p, and it is positive since $(0, \ldots, 0)$ is a root. So there are at least p roots. This implies there must be a nontrivial root as well.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

