18.781 Solutions to Problem Set 3

1. It's enough to solve the congruence mod 11 and mod 13 , and then combine the solutions by Chinese Remainder Theorem. Now $x^{3}-9 x^{2}+23 x-15$ factors as $(x-1)(x-3)(x-5)$, so solutions mod 11 or $\bmod 13$ are $1,3,5$ in each case. To combine, we first need x, y such that $13 x+11 y=1$. For instance $x=-5, y=6$ works. (We can find x, y by Euclidean algorithm). So if we have a solution $a \bmod 11$ and a solution $b \bmod 13$ then the Chinese Remainder Theorem recipe tells us that

$$
(-5)(13) a+(6)(11) b=-65 a+66 b
$$

is a solution mod 143. Running this over $a \in\{1,3,5\}$ and $b \in\{1,3,5\}$ we get 9 solutions: $1,3,5,14$, $16,27,122,133,135$.
2. We just need to compute these expressions mod 4 and mod 25 , and then combine using CRT. Note that $(1)(25)+(-6)(4)=1$, so if $x \equiv a \bmod 4$ and $x \equiv b \bmod 25$ then $x \equiv 25 a-24 b(\bmod 100)$.
For 2^{100} : We have $2^{100} \equiv 0(\bmod 4)$ and $2^{100}=2^{5 \phi(25)} \equiv 1(\bmod 25)$. So the last two digits are $25 \cdot 0-24 \cdot 1 \equiv 76$.
For 3^{100} : We have $3^{100}=3^{50 \phi(4)} \equiv 1(\bmod 4)$ and $3^{100}=3^{5 \phi(25)} \equiv 1(\bmod 25)$. So the last two digits are $25 \cdot 1-24 \cdot 1 \equiv 01$.
3. Let $m=\prod p_{i}^{e_{i}}$. By the CRT, we can simply find the number of solutions mod $p_{i}^{e_{i}}$ for each i and take the product. Now $x^{2} \equiv x\left(\bmod p^{e}\right)$ means $p^{e} \mid x^{2}-x=x(x-1)$. Since x and $x-1$ are coprime, we have $p^{e} \mid x$ or $p^{e} \mid x-1$. So $x \equiv 0,1\left(\bmod p^{e}\right)$ are the two solutions. Thus, for an arbitrary integer m, the number of solutions is 2^{r} where r is the number of distinct prime divisors of m.
4. (a) We need to show that $a^{560} \equiv 1 \bmod 3, \bmod 11$, and mod 17 for any a coprime to 561 .

Since a is coprime to $3, a^{2} \equiv 1(\bmod 3)$, so $a^{560}=a^{2 \cdot 280} \equiv 1(\bmod 3)$.
Since a is coprime to $11, a^{10} \equiv 1(\bmod 11)$, so $a^{560}=a^{56 \cdot 10} \equiv 1(\bmod 11)$.
Since a is coprime to $17, a^{16} \equiv 1(\bmod 17)$, so $a^{560}=a^{35 \cdot 16} \equiv 1(\bmod 17)$.
(b) Suppose $n=p q$ with p, q distinct primes satisfies property P. Then for all a coprime to p and q, we have $a^{p q-1} \equiv 1(\bmod p)$ and $a^{p q-1} \equiv 1(\bmod q)$.
Assume, without loss of generality, that $p<q$. Then

$$
\begin{aligned}
a^{p q-1} & =a^{(q-1) p+p-1} \\
& =a^{(q-1) p} \cdot a^{p-1} \\
& \equiv 1^{p} \cdot a^{p-1} \quad(\bmod q)
\end{aligned}
$$

Now for any x coprime to q, we can let a be the unique integer mod $p q$ which satisfies $a \equiv x$ $(\bmod q)$ and $a \equiv 1(\bmod p)$, so that a is coprime to $p q$ and thus $x^{p-1} \equiv 1(\bmod q)$. However, because of the existence of a primitive root $\bmod q$, we know that $q-1$ is the smallest positive integer such that $x^{q-1} \equiv 1(\bmod q)$ for every x coprime to q. Since $p-1<q-1$, we have a contradiction.
(c) A sufficient condition is that $p-1 \mid p q r-1$. This implies that $q r \equiv 1(\bmod p-1), p r \equiv 1(\bmod q-1)$,
and $p q \equiv 1(\bmod r-1)$. Using it to search we find the following numbers:

$$
\begin{aligned}
561 & =3 \cdot 11 \cdot 17 \\
1105 & =5 \cdot 13 \cdot 17 \\
1729 & =7 \cdot 13 \cdot 19 \\
2465 & =5 \cdot 17 \cdot 29 \\
2821 & =7 \cdot 13 \cdot 31 \\
6601 & =7 \cdot 23 \cdot 41 \\
8911 & =7 \cdot 19 \cdot 67 \\
10585 & =5 \cdot 29 \cdot 73 \\
15841 & =7 \cdot 31 \cdot 73 \\
29341 & =13 \cdot 37 \cdot 61 .
\end{aligned}
$$

5. Yes. Pick distinct primes p_{1}, \ldots, p_{N} and let x solve

$$
\begin{aligned}
x & \equiv 0 \\
x+1 & \equiv 0 \quad\left(\bmod p_{1}^{2}\right) \\
\vdots & \left(\bmod p_{2}^{2}\right) \\
x+N-1 & \equiv 0 \quad\left(\bmod p_{N}^{2}\right)
\end{aligned}
$$

This has solutions mod $p_{1}^{2} \cdots p_{N}^{2}$, by CRT. We can pick x positive. Then for each $i, x+i-1$ is divisible by p_{i}^{2}, and thus is not squarefree.
6. (a) You should find that the density is about $2 / 3$.
(b) You should find that the density is about $1 / 3$.
(c) The key difference is the Galois group, which is S_{3} for (a) and $\mathbb{Z} / 3 \mathbb{Z}$ for (b). The reason for the distribution you see is a deep theorem in algebraic number theory called the Chebotarev density theorem. In terms of group theory, the main difference is that the number of permutations in S_{3} with a fixed point is 4 , leading to the fraction $4 / 6=2 / 3$, while the corresponding number for $A_{3}=\{(1),(123),(132)\}$ is 1 , leading to the fraction $1 / 3$.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

