18.781 Solutions to Problem Set 3

1. It's enough to solve the congruence mod 11 and mod 13, and then combine the solutions by Chinese Remainder Theorem. Now $x^3 - 9x^2 + 23x - 15$ factors as (x-1)(x-3)(x-5), so solutions mod 11 or mod 13 are 1,3,5 in each case. To combine, we first need x, y such that 13x + 11y = 1. For instance x = -5, y = 6 works. (We can find x, y by Euclidean algorithm). So if we have a solution $a \mod 11$ and a solution $b \mod 13$ then the Chinese Remainder Theorem recipe tells us that

$$(-5)(13)a + (6)(11)b = -65a + 66b$$

is a solution mod 143. Running this over $a \in \{1, 3, 5\}$ and $b \in \{1, 3, 5\}$ we get 9 solutions: 1, 3, 5, 14, 16, 27, 122, 133, 135.

2. We just need to compute these expressions mod 4 and mod 25, and then combine using CRT. Note that (1)(25) + (-6)(4) = 1, so if $x \equiv a \mod 4$ and $x \equiv b \mod 25$ then $x \equiv 25a - 24b \pmod{100}$.

For 2^{100} : We have $2^{100} \equiv 0 \pmod{4}$ and $2^{100} = 2^{5\phi(25)} \equiv 1 \pmod{25}$. So the last two digits are $25 \cdot 0 - 24 \cdot 1 \equiv 76$.

For 3^{100} : We have $3^{100} = 3^{50\phi(4)} \equiv 1 \pmod{4}$ and $3^{100} = 3^{5\phi(25)} \equiv 1 \pmod{25}$. So the last two digits are $25 \cdot 1 - 24 \cdot 1 \equiv 01$.

- 3. Let $m = \prod p_i^{e_i}$. By the CRT, we can simply find the number of solutions mod $p_i^{e_i}$ for each *i* and take the product. Now $x^2 \equiv x \pmod{p^e}$ means $p^e | x^2 x = x(x-1)$. Since *x* and x-1 are coprime, we have $p^e | x$ or $p^e | x 1$. So $x \equiv 0, 1 \pmod{p^e}$ are the two solutions. Thus, for an arbitrary integer *m*, the number of solutions is 2^r where *r* is the number of distinct prime divisors of *m*.
- 4. (a) We need to show that $a^{560} \equiv 1 \mod 3$, mod 11, and mod 17 for any *a* coprime to 561. Since *a* is coprime to 3, $a^2 \equiv 1 \pmod{3}$, so $a^{560} = a^{2 \cdot 280} \equiv 1 \pmod{3}$. Since *a* is coprime to 11, $a^{10} \equiv 1 \pmod{11}$, so $a^{560} = a^{56 \cdot 10} \equiv 1 \pmod{11}$. Since *a* is coprime to 17, $a^{16} \equiv 1 \pmod{17}$, so $a^{560} = a^{35 \cdot 16} \equiv 1 \pmod{17}$.
 - (b) Suppose n = pq with p, q distinct primes satisfies property P. Then for all a coprime to p and q, we have a^{pq-1} ≡ 1 (mod p) and a^{pq-1} ≡ 1 (mod q).
 Assume, without loss of generality, that p < q. Then

$$a^{pq-1} = a^{(q-1)p+p-1}$$
$$= a^{(q-1)p} \cdot a^{p-1}$$
$$\equiv 1^p \cdot a^{p-1} \pmod{q}$$

Now for any x coprime to q, we can let a be the unique integer mod pq which satisfies $a \equiv x \pmod{q}$ and $q \equiv 1 \pmod{p}$, so that a is coprime to pq and thus $x^{p-1} \equiv 1 \pmod{q}$. However, because of the existence of a primitive root mod q, we know that q-1 is the smallest positive integer such that $x^{q-1} \equiv 1 \pmod{q}$ for every x coprime to q. Since p-1 < q-1, we have a contradiction.

(c) A sufficient condition is that p-1|pqr-1. This implies that $qr \equiv 1 \pmod{p-1}$, $pr \equiv 1 \pmod{q-1}$,

and $pq \equiv 1 \pmod{r-1}$. Using it to search we find the following numbers:

- $561 = 3 \cdot 11 \cdot 17$ $1105 = 5 \cdot 13 \cdot 17$ $1729 = 7 \cdot 13 \cdot 19$ $2465 = 5 \cdot 17 \cdot 29$ $2821 = 7 \cdot 13 \cdot 31$ $6601 = 7 \cdot 23 \cdot 41$ $8911 = 7 \cdot 19 \cdot 67$ $10585 = 5 \cdot 29 \cdot 73$ $15841 = 7 \cdot 31 \cdot 73$ $29341 = 13 \cdot 37 \cdot 61$
- 5. Yes. Pick distinct primes p_1, \ldots, p_N and let x solve
 - $\begin{aligned} x \equiv 0 \pmod{p_1^2} \\ x+1 \equiv 0 \pmod{p_2^2} \\ \vdots \\ x+N-1 \equiv 0 \pmod{p_N^2} \end{aligned}$

This has solutions mod $p_1^2 \cdots p_N^2$, by CRT. We can pick x positive. Then for each i, x+i-1 is divisible by p_i^2 , and thus is not squarefree.

- 6. (a) You should find that the density is about 2/3.
 - (b) You should find that the density is about 1/3.
 - (c) The key difference is the Galois group, which is S_3 for (a) and $\mathbb{Z}/3\mathbb{Z}$ for (b). The reason for the distribution you see is a deep theorem in algebraic number theory called the Chebotarev density theorem. In terms of group theory, the main difference is that the number of permutations in S_3 with a fixed point is 4, leading to the fraction 4/6 = 2/3, while the corresponding number for $A_3 = \{(1), (123), (132)\}$ is 1, leading to the fraction 1/3.

18.781 Theory of Numbers Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.