18.781 Solutions to Problem Set 2

1. Let $m=n-k$. We want to show that the power of p dividing $\binom{m+k}{k}=\frac{(m+k)!}{m!k!}$ is the number of carries when adding m to k in base p. Note that each time a carry occurs, $\left(a_{i}+p\right)$ in the i th place becomes a_{i} in the i th place and $\left(a_{i+1}+1\right)$ in the $(i+1)$ st place, so the number of carries is

$$
\frac{(\text { sum of the digits of } k)+(\text { sum of the digits of } m)-(\text { sum of the digits of } m+k)}{p-1} .
$$

Since for any integer a the power of p dividing $a!$ is $(a-s) /(p-1)$, where s is the sum of the digits of a in base p, this expression is precisely the power of p dividing $\frac{(m+k)!}{m!k!}$.
2. (a) Divide the $m+n$ objects (from which we need to choose k) into two subcollections, A with m objects and B with n objects. Then we need to choose i objects from A and $k-i$ objects from B, where i may range from 0 to k.
(b) In the equation

$$
(1+x)^{m+n}=\left(1+\binom{m}{1} x+\binom{m}{2} x^{2}+\cdots+\binom{m}{m} x^{m}\right) \cdot\left(1+\binom{n}{1} x+\cdots+\binom{n}{n} x^{n}\right)
$$

the coefficient of x^{k} in the LHS is $\binom{m+n}{k}$, and the coefficient of x^{k} in the RHS is $\sum\binom{m}{i}\binom{n}{k-i}$.
(c) Setting $m=n=k$ gives

$$
\binom{2 n}{n}=\sum_{i=0}^{n}\binom{n}{i}\binom{n}{n-i}=\sum_{i=0}^{n}\binom{n}{i}^{2} .
$$

(d) Consider the identity

$$
(1-x)^{2 n}(1+x)^{2 n}=\left(1-x^{2}\right)^{2 n}
$$

On the RHS, the coefficient of $x^{2 n}$ is the same as the coefficient of x^{n} in the polynomial $(1-x)^{2 n}$, namely $(-1)^{n}\binom{2 n}{n}$. On the LHS, the coefficient of $x^{2 n}$ is

$$
\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k}\binom{2 n}{n-k}=\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k}^{2}
$$

as desired.
3. (a) We know that $p\binom{p}{i}$ for $i=1, \ldots, p-1$. So $(1+x)^{p} \equiv 1+x^{p}(\bmod p)$ is immediate. We now use proof by induction, where we have just proven the base case. Now

$$
\begin{aligned}
(1+x)^{p^{k}} & \equiv\left((1+x)^{p}\right)^{p^{k-1}} \\
& \equiv\left(1+x^{p}\right)^{p^{k-1}} \\
& \equiv 1+x^{p^{k}} \quad(\bmod p)
\end{aligned}
$$

by the inductive hypothesis, completing the induction. We could also have used the result from class that $\binom{p^{k}}{i} \equiv 0(\bmod p)$ for $i=1, \ldots, p^{k}-1$.
(b) By part (a),

$$
\begin{aligned}
(1+x)^{a} & =(1+x)^{a_{0}+a_{1} p+\cdots+a_{r} p^{r}} \\
& =(1+x)^{a_{0}}(1+x)^{a_{1} p} \cdots(1+x)^{a_{r} p^{r}} \\
& \equiv(1+x)^{a_{0}}\left(1+x^{p}\right)^{a_{1}} \cdots\left(1+x^{p^{r}}\right)^{a_{r}} \quad(\bmod p)
\end{aligned}
$$

The only way to get $x^{b_{0}+b_{1} p+\cdots+b_{r} p^{r}}$ from the expansion is to choose $x^{b_{0}}$ from $(1+x)^{a_{0}}, x^{p b_{1}}$ from $\left(1+x^{p}\right)^{a_{1}}, \ldots, x^{p^{r} b_{r}}$ from $\left(1+x^{p^{r}}\right)^{a_{r}}$. So the coefficient is

$$
\binom{a}{b} \equiv\binom{a_{r}}{b_{r}}\binom{a_{r-1}}{b_{r-1}} \cdots\binom{a_{0}}{b_{0}} \quad(\bmod p)
$$

4. Suppose n is prime. Then, since the binomial coefficients in the middle vanish mod p,

$$
\begin{aligned}
(x-a)^{n} & \equiv x^{n}+(-a)^{n} \\
& \equiv x^{n}+(-a) \quad(\bmod n)
\end{aligned}
$$

Now for the converse. The polynomial congruence in particular means that n must divide ($\left.\begin{array}{l}n \\ i\end{array}\right)$ for $i=1, \ldots, n-1$. We'll see first that this implies n must be a power of a prime.
Let p be any prime dividing n. If n is not a power of p, then the base p expansion of n does not look like 1 followed by a bunch of zeroes, so it's either $n_{r} 0 \cdots 0$ with $n \geq 2$, or $n_{r} n_{r-1} \cdots n_{i} \cdots n_{0}$ with some $n_{i} \geq 1$ for $i<r$. In any case, let k have the base p expansion $10 \cdots 0$ (i.e., $k=p^{r}$). Then subtracting k from n in base p doesn't involve any carries, so $p \nmid\binom{n}{k}$ and therefore $n \nmid\binom{n}{k}$, contradiction. So n must be a power of p.
Let's assume n is not a prime, so we now have $n=p^{r}$ with $r \geq 2$. Then it's clear that subtracting p^{r-1} (whose base p expansion is $010 \cdots 0$) from n in base p will involve only one carry. So $p \|\binom{ n}{p^{r-1}}$, and thus $n=p^{r}$ cannot divide this binomial coefficient, contradiction. Therefore, n is indeed a prime.
5. We need to show that $11 n^{7}+7 n^{11}+59 n$ is divisible by 77 . It's enough to show divisibility by 7 and by 11 separately. Mod 7 we get

$$
\begin{aligned}
11 n^{7}+7 n^{11}+59 n & \equiv 11 n^{7}+3 n \\
& \equiv 11 n+3 n \\
& \equiv 0 \quad(\bmod 7)
\end{aligned}
$$

and similarly mod 11 .
6. We have

$$
p^{e} \mid\left(x^{2}-1\right)=(x-1)(x+1)
$$

Suppose p is odd. Then p can't divide both $x+1$ and $x-1$, since their difference 2 isn't divisible by p, so $\left(p^{e}, x+1\right)=1$ or $\left(p^{e}, x-1\right)=1$. Hence $p^{e} \mid x-1$ or $p^{e} \mid x+1$, and the only two solutions are $x \equiv \pm 1$ $\left(\bmod p^{3}\right)$.
Now suppose $p=2$. Then $x^{2} \equiv 1\left(\bmod 2^{e}\right)$ means x must be odd, so let $x=2 y+1$. We have

$$
2^{e} \mid(x-1)(x+1)=4 y(y+1)
$$

Note that if $p=2$ then $x=1$, and if $p=4$ then $x=1,3$. So let's assume $e \geq 3$. Since y and $y+1$ are obviously coprime, we have $2^{e-2} \mid y$ or $2^{e-2} \mid y+1$, i.e., $y \equiv 0\left(\bmod 2^{e-2}\right)$ or $y \equiv-1\left(\bmod 2^{e-2}\right)$. Then, modulo 2^{e-1}, the possible solutions for y are $0,2^{e-2}, 2^{e-2}-1,-1$, and the corresponding solutions for x are $1,-1,2^{e-1}+1,2^{e-1}-1$. It's easy to verify that all of these work and are distinct modulo 2^{e}.
7. (a) The binomial coefficient

$$
\binom{x}{k}=\frac{x(x-1) \cdots(x-k+1)}{k!}
$$

obviously has degree k in x and highest coefficient $1 / k!$. We show by induction on the degree n of $p(x)$ that there are unique complex numbers c_{0}, \ldots, c_{n} such that

$$
p(x)=c_{n}\binom{x}{n}+c_{n-1}\binom{x}{n-1}+\cdots+c_{0} .
$$

For $n=0, p(x)$ is constant, so $p(x)$ can be uniquely expressed as $p(0)\binom{x}{0}$. Now suppose we've proved the proposition for polynomials of degree less than n. Then if $p(x)=p_{n} x^{n}+\cdots$ we let $c_{n}=k!p_{n}$ and note that $c_{n}\binom{x}{n}$ is of degree n and leading coefficient $p_{n} x^{n}$. So $p(x)-c_{n}\binom{x}{n}$ has degree less than n, and by the inductive hypothesis, equals $c_{n-1}\binom{x}{n-1}+\cdots+c_{0}$ for some c_{n-1}, \ldots, c_{0} uniquely determined. (Note that c_{n} is also uniquely determined from the highest coefficient). This completes the induction.
(b) Note that

$$
\begin{aligned}
\Delta\binom{x}{k} & =\binom{x+1}{k}-\binom{x}{k} \\
& =\frac{(x+1) x(x-1) \cdots(x-k+2)}{k!}-\frac{x(x-1) \cdots(x-k+1)}{k!} \\
& =\frac{x(x-1) \cdots(x-k+2)}{k!}[(x+1)-(x-k+1)] \\
& =\frac{x(x-1) \cdots(x-k+2) k}{k!} \\
& =\frac{x(x-1) \cdots(x-(k-1)+1)}{(k-1)!} \\
& =\binom{x}{k-1}
\end{aligned}
$$

By linearity, if $p(x)=\sum_{k=0}^{n} c_{k}\binom{x}{k}$ then

$$
\begin{aligned}
\Delta p(x) & =\sum_{k=0}^{n} c_{k} \Delta\binom{x}{k} \\
& =\sum_{k=1}^{n} c_{k}\binom{x}{k-1} .
\end{aligned}
$$

(Note that the $k=0$ term goes away since $\Delta\binom{x}{0}=0$.)
(c) One direction is obvious: if $c_{k} \in \mathbb{Z}$ for all k, then since $\binom{m}{k}$ is always an integer, we have $p(m)=\sum_{k=0}^{n} c_{k}\binom{m}{k} \in \mathbb{Z}$ for all integers m.
Conversely, suppose $p(m) \in \mathbb{Z}$ for all m. Then we'll show by induction on the degree n of p that the coefficients c_{k} for such a p must be integers.
For $n=0$ this is obvious, so suppose we've proved the proposition for all polynomials with degree less than n. Consider the polynomial $q(x)=\Delta p(x)$. It has degree $n-1$ since $q(x)=\sum_{k=1}^{n} c_{k}\binom{x}{k-1}$. Also $q(m)=p(m+1)-p(m)$ is an integer for all integers m. So we get by the inductive hypothesis that c_{1}, \ldots, c_{n} are all integers. Then, evaluating p at $m=0$,

$$
\begin{aligned}
p(0) & =c_{0}+c_{1}\binom{0}{1}+\cdots+c_{n}\binom{0}{n} \\
& =c_{0}
\end{aligned}
$$

So $c_{0} \in \mathbb{Z}$ as well. This completes the induction.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

