
18.781 Solutions to Problem Set 1

1. Suppose not. Then let S be the set of integers {−(b+ka) : k ∈ Z}, so by hypothesis S consists entirely
of nonnegative integers. By the Well-Ordering Principle, it has a smallest positive element, say, b+ka.
But then b + (k − 1)a is smaller since a > 0, contradiction.

2. The largest such integer is ab−a− b. To see it’s not a nonnegative integer linear combination, suppose
ab−a− b = ax+ by with x, y ∈ Z 0. Then a(b−1−x) = b(y+ 1). And since (a, b) = 1 we have a≥ |y+ 1
(and b|b− 1− x). This forces y ≥ a− 1 because y + 1 ≥ 1. So

ax + by ≥ a · 0 + b(a− 1) = ab− b > ab− a− b,

contradicting ab− a− b = ax + by.

On the other hand, suppose n > ab− a− b. Since gcd(a, b) = 1 we can write n = ax+ by with x, y ∈ Z
(not necessarily nonnegative). Now note that n = a(x − bk) + b(y + ak) for any integer k. By the
division algorithm, there exists an integer k such that 0 ≤ x− bk < b. Let x′ = x− bk and y′ = y + ak.
Then we have n = ax′ + by′ with 0 ≤ x′ ≤ b− 1, so

by′ = n− ax′ ≥ (ab− a− b + 1)− a(b− 1) = −(b− 1).

Therefore y′ ≥ −(b−1) , and since y′ is an integer, we get y 0.b
′ ≥ This shows that n = ax′ + by′ is a

nonnegative integer linear combination.

3. One direction is clear: if m|n then n = mk for some positive integer k, and

an − 1 = amk − 1 = (am − 1)(am(k−1) + am(k−2) + · · ·+ am + 1)

is divisible by am − 1. Now if m - n, we write n = mk + r with 0 < r < m. Then

an − 1 = amk+r − 1 = amk+r − ar + ar − 1 = ar(amk − 1) + ar − 1.

Now am − 1 divides amk − 1 but it doesn’t divide ar − 1, since 0 < ar − 1 < am − 1. So am − 1 can’t
divide an − 1.

4. Using the Euclidean algorithm:

89 1 0
2 43 0 1

14 3 1 −2
1 −14 29

So (−14)89 + (29)43 = 1, i.e., (x0, y0) = (−14, 29). Now if x, y is any solution then 89(x−x0) + 43(y−
y0) = 0. And since 43 and 89 are coprime, 43|x0 − x and 89|y − y0. Then we have{

x = x0 − 43k

y = y0 + 89k

for some k ∈ Z. It’s easy to verify that all solutions of this form satisfy 89x + 43y = 1. So all the
solutions are given by

(x, y) ∈ {(−14− 43k, 29 + 89k) : k ∈ Z}.
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5. Since 1 < a < b, {
b = aq + r 0 < r < a

a = rq′ + s 0 ≤ s < r.

(If r = 0 we’re done in one step.) So after two steps, (a, b) gets replaced by (s, r). We claim s < a/2.
If in step 1, r ≤ a/2, then we’re done by s < r. Otherwise, r > a/2 and in step 2 we’ll have q′ = 1
and s = a − r < a/2. In any case, we see that after two steps, the value of a at least halves. So after
at most 2 log2 a steps, we’ll get a pair (anew, bnew) such that anew < 2, i.e., anew = 1. Therefore the
algorithm terminates after at most C log a steps for C = 2/ log 2.

6. You should notice that about 50% of the primes are 1 mod 4 and about 50% are 3 mod 4. Also, the
number of primes which are 3 mod 4 seems to be larger than the number of primes 1 mod 4, up to any
integer. This is not always the case—see the article “Prime number races” by Andrew Gronville and
Greg Martin for a fascinating account.

7. A can always win.

Proof: Note that for any fixed n, there are only finitely many squares on the board, so it’s a finite
game, which means that one of the players must have a winning strategy. If B has a winning strategy,
we’ll show a contradiction. Since A puts down the first token, A can choose to put it down on the
square 1. Then B must have a winning strategy from here, so suppose B puts down a token on square
k. However, A could start with k instead, and imitate what B would have done (B can’t use 1, since
1 divides k). This shows that A wins if starting with k, contradiction.

Note: I don’t know of an explicit winning strategy; that problem seems to be unsolved!

8. We use proof by contradiction, as in Euclid’s proof. Suppose there are only finitely many primes of
the form 4k + 3, say, p1, . . . , pn. Now consider

N = 4p1 · · · pn − 1.

Clearly N > 1, and N ≡ 3 mod 4. So N must have a prime divisor congruent to 3 mod 4, else if all
the factors of N are congruent to 1 mod 4 then N ≡ 1 (mod 4). But then some pi must divide N , a
contradiction since pi|4p1 · · · pn and pi |1.6
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