18.781 Solutions to Problem Set 1

1. Suppose not. Then let S be the set of integers $\{-(b+k a): k \in \mathbb{Z}\}$, so by hypothesis S consists entirely of nonnegative integers. By the Well-Ordering Principle, it has a smallest positive element, say, $b+k a$. But then $b+(k-1) a$ is smaller since $a>0$, contradiction.
2. The largest such integer is $a b-a-b$. To see it's not a nonnegative integer linear combination, suppose $a b-a-b=a x+b y$ with $x, y \in \mathbb{Z}_{\geq 0}$. Then $a(b-1-x)=b(y+1)$. And since $(a, b)=1$ we have $a \mid y+1$ (and $b \mid b-1-x)$. This forces $y \geq a-1$ because $y+1 \geq 1$. So

$$
a x+b y \geq a \cdot 0+b(a-1)=a b-b>a b-a-b
$$

contradicting $a b-a-b=a x+b y$.
On the other hand, suppose $n>a b-a-b$. Since $\operatorname{gcd}(a, b)=1$ we can write $n=a x+b y$ with $x, y \in \mathbb{Z}$ (not necessarily nonnegative). Now note that $n=a(x-b k)+b(y+a k)$ for any integer k. By the division algorithm, there exists an integer k such that $0 \leq x-b k<b$. Let $x^{\prime}=x-b k$ and $y^{\prime}=y+a k$. Then we have $n=a x^{\prime}+b y^{\prime}$ with $0 \leq x^{\prime} \leq b-1$, so

$$
b y^{\prime}=n-a x^{\prime} \geq(a b-a-b+1)-a(b-1)=-(b-1) .
$$

Therefore $y^{\prime} \geq \frac{-(b-1)}{b}$, and since y^{\prime} is an integer, we get $y^{\prime} \geq 0$. This shows that $n=a x^{\prime}+b y^{\prime}$ is a nonnegative integer linear combination.
3. One direction is clear: if $m \mid n$ then $n=m k$ for some positive integer k, and

$$
a^{n}-1=a^{m k}-1=\left(a^{m}-1\right)\left(a^{m(k-1)}+a^{m(k-2)}+\cdots+a^{m}+1\right)
$$

is divisible by $a^{m}-1$. Now if $m \nmid n$, we write $n=m k+r$ with $0<r<m$. Then

$$
a^{n}-1=a^{m k+r}-1=a^{m k+r}-a^{r}+a^{r}-1=a^{r}\left(a^{m k}-1\right)+a^{r}-1 .
$$

Now $a^{m}-1$ divides $a^{m k}-1$ but it doesn't divide $a^{r}-1$, since $0<a^{r}-1<a^{m}-1$. So $a^{m}-1$ can't divide $a^{n}-1$.
4. Using the Euclidean algorithm:

	89	1	0
2	43	0	1
14	3	1	-2
	1	-14	29

So $(-14) 89+(29) 43=1$, i.e., $\left(x_{0}, y_{0}\right)=(-14,29)$. Now if x, y is any solution then $89\left(x-x_{0}\right)+43(y-$ $\left.y_{0}\right)=0$. And since 43 and 89 are coprime, $43 \mid x_{0}-x$ and $89 \mid y-y_{0}$. Then we have

$$
\left\{\begin{array}{l}
x=x_{0}-43 k \\
y=y_{0}+89 k
\end{array}\right.
$$

for some $k \in \mathbb{Z}$. It's easy to verify that all solutions of this form satisfy $89 x+43 y=1$. So all the solutions are given by

$$
(x, y) \in\{(-14-43 k, 29+89 k): k \in \mathbb{Z}\} .
$$

5. Since $1<a<b$,

$$
\begin{cases}b=a q+r & 0<r<a \\ a=r q^{\prime}+s & 0 \leq s<r\end{cases}
$$

(If $r=0$ we're done in one step.) So after two steps, (a, b) gets replaced by (s, r). We claim $s<a / 2$. If in step $1, r \leq a / 2$, then we're done by $s<r$. Otherwise, $r>a / 2$ and in step 2 we'll have $q^{\prime}=1$ and $s=a-r<a / 2$. In any case, we see that after two steps, the value of a at least halves. So after at most $2 \log _{2} a$ steps, we'll get a pair $\left(a_{\text {new }}, b_{\text {new }}\right)$ such that $a_{\text {new }}<2$, i.e., $a_{\text {new }}=1$. Therefore the algorithm terminates after at most $C \log a$ steps for $C=2 / \log 2$.
6. You should notice that about 50% of the primes are $1 \bmod 4$ and about 50% are $3 \bmod 4$. Also, the number of primes which are $3 \bmod 4$ seems to be larger than the number of primes $1 \bmod 4$, up to any integer. This is not always the case - see the article "Prime number races" by Andrew Gronville and Greg Martin for a fascinating account.
7. A can always win.

Proof: Note that for any fixed n, there are only finitely many squares on the board, so it's a finite game, which means that one of the players must have a winning strategy. If B has a winning strategy, we'll show a contradiction. Since A puts down the first token, A can choose to put it down on the square 1. Then B must have a winning strategy from here, so suppose B puts down a token on square k. However, A could start with k instead, and imitate what B would have done (B can't use 1 , since 1 divides k). This shows that A wins if starting with k, contradiction.
Note: I don't know of an explicit winning strategy; that problem seems to be unsolved!
8. We use proof by contradiction, as in Euclid's proof. Suppose there are only finitely many primes of the form $4 k+3$, say, p_{1}, \ldots, p_{n}. Now consider

$$
N=4 p_{1} \cdots p_{n}-1
$$

Clearly $N>1$, and $N \equiv 3 \bmod 4$. So N must have a prime divisor congruent to $3 \bmod 4$, else if all the factors of N are congruent to $1 \bmod 4$ then $N \equiv 1(\bmod 4)$. But then some p_{i} must divide N, a contradiction since $p_{i} \mid 4 p_{1} \cdots p_{n}$ and $p_{i} \not \backslash 1$.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

