
SOLUTIONS TO EXERCISES

CHAPTER I

A. Manifolds

A.1. First take a covering {V,,c}, of A by open relatively compact
sets V disjoint from B. Then take a covering {V}BJ of the closed set
M- U,, V, by open relatively compact sets V disjoint from A.
The covering {V },,, {V}BS of M has a locally finite refinement {W} 1yr.
If {}ver is a partition of unity subordinate to this covering, put f =
Y2WynA00 9y

A.2. If p, P2 E M are sufficiently close within a coordinate neigh-
borhood U, there exists a diffeomorphism mapping Pi to P2 and leaving
M - U pointwise fixed. Now consider a curve segment y(t) (0 t 1)
in M joining p to q. Let t* be the supremum of those t for which there
exists a diffeomorphism of M mapping p on y(t). The initial remark
shows first that t* > 0, next that t* = 1, and finally that t* is reached
as a maximum.

A.3. The "only if" is obvious and "if" follows from the uniqueness
in Prop. 1.1. Now let = C(R) where R is given the ordinary differen-
tiable structure. If n is an odd integer, let an denote the set of functions
x - f (x n) on R, f being arbitrary. Then an satisfies R1, 2, 3.
Since an am for n m, the corresponding n are all different.

A.4. (i) If d X = Y and f C°(N), then X(f o I) =
(Yf ) o re ao. On the other hand, suppose X o c a0. If F E %0, then
F = g o a) whereg e C(N) is unique. If fe C(N), then X(f o i) 
g o 0I (g C(N) unique), and f -- g is a derivation, giving Y.

(ii) If d X = Y, then Y,(p)= dcp(Xp), so necessity follows.
Suppose dp(Mp) = N(p) for each p M. Define for r e N, Y, =
dqp(Xp) if r = (p). In order to show that Y: r - Y, is differentiable
we use (by virtue of Theorem 15.5) coordinates around p and around
r = (p) such that 0Q has the expression (xl, ... , xm) (xl, ..., Xn).
Writing

X = X ai( x1, ..., Xm) xi
1 ' 

m
1X 
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we have for q sufficiently near p

d4(X) = C ai(xl(q),..., x(q)) ( axi
1 0(q)

so condition (1) implies that for 1 i < n, ai is constant in the last
m - n arguments. Hence

a
Y = ai (xl, ... , X*n,xn+i(P), ... X()) x

1

(iii) f e Co(N) if and only if f o b e Co(R). If f (x) = x3, then
f o O(x) = x, (f' o b)(x) = 3xi, so f C®(N), f' o CO(N). Hence
f o 4 E 0o,but X(f o 0P)0 a0; so by (i), X is not projectable.

A.5. Obvious.

A.6. Use Props. 15.2 and 15.3 to shrink the given covering to a new
one; then use the result of Exercise A.1 to imitate the proof of Theorem
1.3.

A.7. We can assume M = Rm , p = 0, and that X0 = (a/at1 )o in
terms of the standard coordinate system {tl , ..., tm} on Rm. Consider the
integral curve pjt(, c2, ..., cm) of X through (0, c2, ... , Cm). Then the
mapping :b (c1, ..., cm) - - pz(O, c2, Cm) is C for small ci,

(O, C2, ... , C) = (0, C2, ... , Cm), SO

do (aci ) = ( at) (i> )

Also

d Io \( a9c1) (0) = X= a )

Thus 0 can be inverted near 0, so {(c, ..., cm}is a local coordinate system.
Finally, if c = (c, ..., cm),

,a fac, 

= l- 1
h-o h [f(9cl+h(0,C2, *, Cm))- f(c(0, C2 ,, Cm)]

= (Xf)( (c))

so X = a/ac1.
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A.8. Let f C"(M). Writing , below when in an equality we omit
terms of higher order in s or t, we have

f ( f-t(--s(t(ps(o))) -f (o)
= f (¢_(-s(¢,(ps(o)))) - f(q-s(¢t(Ps())))

+- (p-s(¢t(Ps(o)))) -f(t(s()))

+f((rps(o)))- f (%(o))+f ((o))- f(o)
-t(Yf )('-s(0t(,s(o))))+ t2(Y2f )(9-s(t(Ps(o))))
- s(Xf)(Vt(9Ps(o)))+ s2(X2f)(bt(T(o)))
+ t(Yf)(ipt(9 (o)))--t2(y2f)(0t(,(o)))

+ s(Xf)(9 s(o))- s2(X2f)(9)s(O))
- st(XYf)(t(9sP(o)))- st(YXf)(t(Ps(o))).

This last expression is obtained by pairing off the 1st and 5th term, the
3rd and 7th, the 2nd and 6th, and the 4th and 8th. Hence

f(y(t 2)) - f(o) = t2([X, Y]f)(O) + O(t3).

A similar proof is given in Faber [1].

B. The Lie Derivative and the Interior Product

B.1. If the desired extension of O(X) exists and if C : Z1(M) -+ C®(M)
is the contraction, then (i), (ii), (iii) imply

(0(X)w)(Y) = X(w(Y)) - ([X, Y]), X, Y 1'(M).

Thus we define (X) on ZD1(M) by this relation and note that
(0(X)w)(fY) =f((X)(w))(Y) (fc C°(M)), so (X) l,(M) C (M).
If U is a coordinate neighborhood with coordinates {xi, ..., xm}, (X)
induces an endomorphism of C°(U), 1(U), and 3Z(U). Putting Xi
a/axi, wj = dxj, each T e 0(U) can be written

T = T(i).(j)Xl ® ... Xi, wjl ... wj

with unique coefficients T(i),(j) e C®(U). Now (X) is uniquely extended
to Z(U) satisfying (i) and (ii). Property (iii) is then verified by induction
on r and s. Finally, (X) is defined on (M) by the condition
O(X)T I U = (X)(T I U) (vertical bar denoting restriction) because as
in the proof of Theorem 2.5 this condition is forced by the requirement
that (X) should be a derivation.

B.2. The first part being obvious, we just verify (/ ·o = (¢-l)*o.
We may assume coe 1(M). If X e Z1 (M) and C is the contraction
X Ow - w(X), then ( o C = C o implies (O ·c)(X) =
¢(o(X 1)) = ((-l).)(X).
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B.3. The formula is obvious if T =fE C(M). Next let T =
Y E 2(M). Iff E Co(M) and q M, we put F(t, q) = f(g, q) and have

F(t, q) -F(O, q) = tl (-) (st, q) ds = t h(t, q),

where h C-(R x M) and h(O,q) = (Xf)(q). Then

(gt Y)v f = (Y(f o g))(g- l p) = (f )(g-1 p) + t(Yh)(t,g p)

lirm (Y - gt' Y)f = (XYf)(p) - (YXf)(p),
t-O t

so the formula holds for T e l(M). But the endomorphism T--
lim_,0 t-l(T - gt T) has properties (i), (ii), and (iii) of Exercise B.1;
it coincides with (X) on Co(M) and on V(M), hence on all of (M)
by the uniqueness in Exercise B.1.

B.4. For (i) we note that both sides are derivations of Z(M) commuting
with contractions, preserving type, and having the same effect on Z1(M)
and on Co(M). The argument of Exercise B.1 shows that they coincide
on (M).

(ii) If to C Dr(M), Y1, ..., Yr E 1(M), then by B.1,

(0(X))(Y1, ..., = X(O(Y1, ..., Yr))- C.(Yl, .., [X, Yi], *..., Y,)

so O(X) commutes with A.
(iii) Since (X) is a derivation of 91(M) and d is a skew-derivation

(that is, satisfies (iv) in Theorem 2.5), the commutator (X)d - dO(X)
is also a skew-derivation. Since it vanishes on f and df (f E C`(M)), it
vanishes identically (cf. Exercise B.1). For B.1-B.4, cf. Palais [3].

B.5. This is done by the same method as in Exercise B.1.

B.6. For (i) we note that by (iii) in Exercise B.5, i(X) 2 is a derivation.
Since it vanishes on C-(M) and Z1(M), it vanishes identically; (ii) follows
by induction; (iii) follows since both sides are skew-derivations which
coincide on C°(M) and on 911(M); (iv) follows because both sides are
derivations which coincide on Co(M) and on W,(M).

C. Affine Connections

C.1. M has a locally finite covering {Uj}, A by coordinate neighbor-
hoods U. On U, we construct an arbitrary Riemannian structure ga.
If I = ,, p is a partition of unity subordinate to the covering, then
Y, Tg, gives the desired Riemannian structure on M.
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C.2. If P is an affine transformation and we write d(a/lax)=
Ei aij alaxi, then conditions V1 and V2imply that each aij is a constant.
If A is the linear transformation (ai), then (/ o A-' has differential I,
hence is a translation B, so ¢(X) = AX + B. The converse is obvious.

C.3. We have *wlo = Zk (j O ¢) ¢*to k , so by (5'), (6), (7) in §8

i = C (rk'j o ()(ak dt +t dak) = 0.
k

This implies that rk'j -0 in normal coordinates, which is equivalent
to the result stated in the exercise.

C.4. A direct verification shows that the mapping : 0 -
E' wi A V ,(0) is a skew-derivation of 9%(M)and that it coincides with
d on C°(M). Next let 0 E 1,(M), X, Y E 1(M). Then, using (5), §7,

2 0(X, Y) =2 (i A Vxi(0))(X, Y)

= Cwi(X) Vx(0)(Y) - w,(Y) V7x(0)(X)

= x(0)(Y)- V(0)(X)

= x (Y) - 0(V(Y)) - Y (X) + 0(V7(X)),

which since the torsion is 0 equals

XO(Y) - Y 0O(X)- 0([X, Y]) = 2 dO(X, Y).

Thus = d on 1,(M), hence by the above on all of %9(M).

C.5. No; an example is given by a circular cone with the vertex
rounded off.

C.6. Using Props. 11.3 and 11.4 we obtain a mapping qv: M - N
such that dqp is an isometry for each p E M. Thus qp(M) C N is an open
subset. Each geodesic in the manifold (M) is indefinitely extendable,
so 1P(M) is complete, whence Tgmaps M onto N. Now Lemma 13.4
implies that (M, cp) is a covering space of N, so M and N are isometric.

D. Submanifolds

D.1. Let I: G - M x N denote the identity mapping and
r : M X N -- M the projection onto the first factor. Let m E M and
Z E(G,)(m()) such that dI,,(Z) = 0. Then Z = (dq)m(X) where
X e Mm. Thus drr o dI o d(X) = 0. But since r o I o g is the identity
mapping, this implies X = 0, so Z = 0 and I is regular.

D.2. Immediate from Lemma 14.1.
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D.3. Consider the figure 8 given by the formula

y(t) = (sin 2t, sin t) (O t < 2r).

Let f(s) be an increasing function on R such that

lim f(s) = 0, f(O) = rr, lim f(s) = 27r.

Then the map s -> y(f(s)) is a bijection of R onto the figure 8. Carrying
the manifold structure of R over, we get a submanifold of R2 which is
closed, yet does not carry the induced topology. Replacing y by 8 given
by (t) = (-sin 2t, sint t), we get another manifold structure on the
figure.

D.4. Suppose dim M < dim N. Using the notation of Prop. 3.2,
let W be a compact neighborhood of p in M and W C U. By the counta-
bility assumption, countably many such W cover M. Thus by Lemma 3.1,
Chapter II, for N, some such W contains an open set in N; contradiction.

D.5. For each m E M there exists by Prop. 3.2 an open neighborhood
Vm of m in N and an extension of g from Vm n M to a C- function Gm
on Vm. The covering {Vm}mGM, N- M of N has a countable locally
finite refinement V1, V2, .... Let 1i,P2, ... be the corresponding partition
of unity. Let qi, Pi2,... be the subsequence of the () whose supports
intersect M, and for each pi, choose mp E M such that supp(Pi) C V.
Then Ep Gm pi, is the desired function G.

D.6. The "if" part is contained in Theorem 14.5 and the "only if"
part is immediate from (2), Chapter V, §6.

E. Curvature

E.1. If (r, 0) are polar coordinates of a vector X in the tangent space
My, the inverse of the map (r, ) -- Expp X gives the "geodesic polar
coordinates" around p. Since the geodesics from p intersect sufficiently
small circles around p orthogonally (Lemma 9.7), the Riemannian
structure has the form g = dr2 + cp(r,0)2 dO2. In these coordinates the
Riemannian measure f -* Jf f dxl ... dxn and the Laplace-Beltrami
operator are, respectively, given by

f-+ f f (r, ) p(r,) drdO,

and

Af =a 2 f + (p-la Of )Px OO2 Or r - ~ a(Of
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In particular
1 1 3s9A(log r) -- -- +

r rsp Or

On the other hand, if (x, y) are the normal coordinates of Expp X such
that

r2 = X2+ y 2 , tan =Y

then, since r dr = x dx + y dy, r2 dO = x dy - y dx,

g = r-4[(x2 r2 + y2 2) dx2 + 2xy(r2 - 92) dx dy + (y2r2 + x2( 2) dy2]

so since the coefficients are smooth near (x, y) = (0, 0) Pq2 has the formt

cp2= r2 + c r . . .,

where c = c(p) is a constant. But then

lim A(logr) = c(p).

On the other hand,

A(r) s Iifh (t, 0) dt dO,

so using the definition in §12 we find K = -3c(p) as stated.
This result is stated in Klein [1], p. 219, without proof (with opposite

sign).

E.2. Let X = /lax, and Y = /5x2 so yE is formed by integral curves
of X, Y, -X, -Y.

v

P, Let p = po= (0, 0, ..., 0)

Pl = (e, 0, .,,, 0)

P2 = (E, e, ..., 0)

p3 = (0, E, ... , 0)
Y

p A r' t

and rij the parallel transport from pj to Pi along y,. Let T be any vector
field on M, and write Ti = Tp;. Then

0 3732721o 10 To - To

= (703 r 32 r 21 7r10 T - r 03ir32r2 1T1 ) + (r 0 373 2r 21 T1 - r03r 32 T 2)

+ (ro03 32T2 - r 3 T3) + ( 03T3 - To).

t See "Some Details," p. 586.
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We use Theorem 7.1 and write - when we omit terms of higher
order in E.Then our expression is

r03 r3 2 721[-E(VxT)l + E2(V2T)l]

+ 7 03 T32[-(V YT)2 + e2(VyT)2]

- r03 T3 2 [-E(Vx7T) + 2 (V T) 2]

- r03[-E(V T)3 + E2(V,T) 3].

Combining now the 1st and 5th term, 2nd and 6th term, etc., this
expression reduces to

-E27o3732( V Y(VX(T))) 2 - E273(VX(V y( T))3

which, since [X, Y] = 0, reduces to

E2'O(R(Y, X)T)3 E2(R(Y, X)T)o.

This proof is a simplification of that of Faber [1]. See Laugwitz [1],
§10 for another version of the result. For curvature and holonomy
groups, see e.g. Ambrose and Singer [2].

F. Surfaces

F.1. Let Z be a vector field on S and X, I, Z vector fields on a neigh-
borhood of s in R3 extending X, Y, and Z, respectively. The inner
product <, > on R3 induces a Riemannian structure g on S. If V and V
denote the corresponding affine connections on R3 and S, respectively,
we deduce from (2), §9

<Z, ()> =g(zs,Vx(¥s).
But

V(Y)s = lim t (Y(t) -

so we obtain V = V'; in particular V' is an affine connection on S.
F.2. Let s(u, v) - (u, v) be local coordinates on S and if g denotes

the Riemannian structure on S, put

g (Etu',u) F =g ( , v), G = , .v)
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Let r(u, v) denote the vector from 0 to the point s(u, v). Subscripts
denoting partial derivatives, r and r span the tangent space at s(u, v),
and we may take the orientation such that

ru X r,
s(5V)= IrxrI

x denoting the cross product. We have

-s r,=t+rv
j;S = tj2 + 2ruvi + rvv2 + ru +- r,,

and

ru.- =r E, r = F, r, r = G,
whence

ruU ru = EU, ru E, r· r v = JG,

r,' r= Gu, Fu-, r, r' ru= F-,-- Gu.

From this it is clear that the geodesic curvature can be expressed in
terms of , , ii, , E, F, G, and their derivatives, and therefore has the
invariance property stated.

F.3. We first recall that under the orthogonal projection P of R3 on
the tangent space Ss(t) the curve P o ys has curvature in ys(t) equal
to the geodesic curvature of ys at ys(t). So in order to avoid discussing
developable surfaces we define the rolling in the problem as follows.
Let r = Ss(to) and let t -- y,(t) be the curve in r such that

y"r(to)= ys(to), ',(to) = s(to)

(t - to is the arc-parameter measured from y,(to)) and such that the
curvature of y, at y,(t) is the geodesiccurvature of ys at ys(t). The rolling
is understood as the family of isometries Ss(t) --*T,,(t) of the tangent
planes such that the vector y%(t)is mapped onto y,(t). Under these maps
a Euclidean parallel family of unit vectors along y, corresponds to a
family Y(t) E Sys(t) We must show that this family is parallel in the
sense of (1), §5. Let denote the angle between ps(t) and Y(t). Then

+(t) = -curvature of y, at y,(t)
= -- geodesic curvature of y. at y,(t)

= X s S)(t).
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Y(t/)

/ 7r

We can choose the coordinates (u, v) near y,(to) such that for t close to to

u(y(t)) = t, v(ys(t)) = const.,

(For example, let r -* 8t(r) be a geodesic in S starting at ys(t) perpen-
dicular to y; small pieces of these geodesics fill up (disjointly) a neigbor-
hood of ys(t0); the mapping St(r) -* (t, r) is a coordinate system with
the desired properties.) Writing Y(t)= Yl(t) r- + Y2(t)r, (using
notation from previous exercise), we have

Yl(t) = cos (t), Y2(t) = G-1/2 sin r(t)

and shall now verify (2), §5. By (2), §9 we have

a a a2Z glkrj = ai gk + gik - gi.

On the curve ys we have E = 1, F - 0, so

2
EE,

rll -2G'

G,Fr=-, 2' 2 G'
rl12 = 2G .

Thus we must verify

y2 _ E yl + GUY2 = 0.
2G 2G

(1)

Ir= o, 12 E-
12 = 2 '

(2)
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