SOLUTIONS TO EXERCISES

CHAPTER I

A. Manifolds

A.2. If $p_{1}, p_{2} \in M$ are sufficiently close within a coordinate neighborhood U, there exists a diffeomorphism mapping p_{1} to p_{2} and leaving $M-U$ pointwise fixed. Now consider a curve segment $\gamma(t)(0 \leqslant t \leqslant 1)$ in M joining p to q. Let t^{*} be the supremum of those t for which there exists a diffeomorphism of M mapping p on $\gamma(t)$. The initial remark shows first that $t^{*}>0$, next that $t^{*}=1$, and finally that t^{*} is reached as a maximum.
A.3. The "only if" is obvious and "if" follows from the uniqueness in Prop. 1.1. Now let $\mathfrak{F}=C^{\infty}(\boldsymbol{R})$ where \boldsymbol{R} is given the ordinary differentiable structure. If n is an odd integer, let \mathfrak{F}^{n} denote the set of functions $x \rightarrow f\left(x^{n}\right)$ on $R, f \in \mathscr{F}$ being arbitrary. Then \mathfrak{F}^{n} satisfies $\mathscr{F}_{1}, \mathfrak{F}_{2}, \mathfrak{F}_{3}$. Since $\mathscr{F}^{n} \neq \mathscr{F}^{m}$ for $n \neq m$, the corresponding δ^{n} are all different.
A.4. (i) If $d \Phi \cdot X=Y$ and $f \in C^{\infty}(N)$, then $X(f \circ \Phi)=$ (Yf) $\circ \Phi \in \mathfrak{F}_{0}$. On the other hand, suppose $X \mathfrak{F}_{0} \subset \mathfrak{F}_{0}$. If $F \in \mathfrak{F}_{0}$, then $F=g \circ \Phi$ where $g \in C^{\infty}(N)$ is unique. If $f \in C^{\infty}(N)$, then $X(f \circ \Phi)=$ $g \circ \Phi\left(g \in C^{\infty}(N)\right.$ unique $)$, and $f \rightarrow g$ is a derivation, giving Y.
(ii) If $d \Phi \cdot X=Y$, then $Y_{\Phi(p)}=d \Phi_{p}\left(X_{p}\right)$, so necessity follows. Suppose $d \Phi_{p}\left(M_{p}\right)=N_{\Phi(p)}$ for each $p \in M$. Define for $r \in N, Y_{r}=$ $d \Phi_{p}\left(X_{p}\right)$ if $r=\Phi(p)$. In order to show that $Y: r \rightarrow Y_{r}$ is differentiable we use (by virtue of Theorem 15.5) coordinates around p and around $r=\Phi(p)$ such that Φ has the expression $\left(x_{1}, \ldots, x_{m}\right) \rightarrow\left(x_{1}, \ldots, x_{n}\right)$. Writing

$$
X=\sum_{1}^{m} a_{i}\left(x_{1}, \ldots, x_{m}\right) \frac{\partial}{\partial x_{i}}
$$

we have for q sufficiently near p

$$
d \Phi_{q}\left(X_{q}\right)=\sum_{1}^{n} a_{i}\left(x_{1}(q), \ldots, x_{m}(q)\right)\left(\frac{\partial}{\partial x_{i}}\right)_{\Phi(q)},
$$

so condition (1) implies that for $1 \leqslant i \leqslant n, a_{i}$ is constant in the last $m-n$ arguments. Hence

$$
Y=\sum_{1}^{n} a_{i}\left(x_{1}, \ldots, x_{n}, x_{n+1}(p), \ldots, x_{m}(p)\right) \frac{\partial}{\partial x_{i}}
$$

(iii) $f \in C^{\infty}(N)$ if and only if $f \circ \psi \in C^{\infty}(R)$. If $f(x)=x^{3}$, then $f \circ \psi(x)=x, \quad\left(f^{\prime} \circ \psi\right)(x)=3 x^{\frac{z}{2}}$, so $f \in C^{\infty}(N), f^{\prime} \notin C^{\infty}(N)$. Hence $f \circ \Phi \in \mathfrak{\mho}_{0}$, but $X(f \circ \Phi) \notin \mathfrak{F}_{0}$; so by (i), X is not projectable.

A.5. Obvious.

A.6. Use Props. 15.2 and 15.3 to shrink the given covering to a new one; then use the result of Exercise A. 1 to imitate the proof of Theorem 1.3.
A.7. We can assume $M=R^{m}, p=0$, and that $X_{0}=\left(\partial / \partial t_{1}\right)_{0}$ in terms of the standard coordinate system $\left\{t_{1}, \ldots, t_{m}\right\}$ on \boldsymbol{R}^{m}. Consider the integral curve $\varphi_{l}\left(0, c_{2}, \ldots, c_{m}\right)$ of X through $\left(0, c_{2}, \ldots, c_{m}\right)$. Then the mapping $\psi:\left(c_{1}, \ldots, c_{m}\right) \rightarrow \varphi_{c_{1}}\left(0, c_{2}, \ldots, c_{m}\right)$ is C^{∞} for small c_{i}, $\psi\left(0, c_{2}, \ldots, c_{m}\right)=\left(0, c_{2}, \ldots, c_{m}\right)$, so

$$
d \psi_{0}\left(\frac{\partial}{\partial c_{i}}\right)=\left(\frac{\partial}{\partial t_{i}}\right)_{0} \quad(i>1)
$$

Also

$$
d \psi_{0}\left(\frac{\partial}{\partial c_{1}}\right)_{0}=\left(\frac{\partial \varphi_{c_{1}}}{\partial c_{1}}\right)(0)=X_{0}=\left(\frac{\partial}{\partial t_{1}}\right)_{0} .
$$

Thus ψ can be inverted near 0 , so $\left\{c_{1}, \ldots, c_{m}\right\}$ is a local coordinate system. Finally, if $c=\left(c_{1}, \ldots, c_{m}\right)$,

$$
\begin{aligned}
\left(\frac{\partial}{\partial c_{1}}\right)_{\psi(c)} f & =\left(\frac{\partial(f \circ \psi)}{\partial c_{1}}\right)_{c} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[f\left(\varphi_{c_{1}+h}\left(0, c_{2}, \ldots, c_{m}\right)\right)-f\left(\varphi_{c_{1}}\left(0, c_{2}, \ldots, c_{m}\right)\right]\right. \\
& =(X f)(\psi(c))
\end{aligned}
$$

so $X=\partial / \partial c_{1}$.
A.8. Let $f \in C^{\infty}(M)$. Writing \sim below when in an equality we omit terms of higher order in s or t, we have

$$
\begin{aligned}
& f\left(\psi_{-t}\left(\varphi_{-s}\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)\right)\right)-f(o) \\
&= f\left(\psi_{-t}\left(\varphi_{-s}\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)\right)\right)-f\left(\varphi_{-s}\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)\right) \\
&\left.+f\left(\varphi_{-s}\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)\right)-f\left(\psi_{t} t \varphi_{s}(o)\right)\right) \\
&+f\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)-f\left(\varphi_{s}(o)\right)+f\left(\varphi_{s}(o)\right)-f(o) \\
& \sim-t(Y f)\left(\varphi_{-s}\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)\right)+\frac{1}{2} t^{2}\left(Y^{2} f\right)\left(\varphi_{-s}\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)\right) \\
&-s(X f)\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)+\frac{1}{2} s^{2}\left(X^{2} f\right)\left(\psi_{t}\left(\varphi_{s}(o)\right)\right) \\
&+t(Y f)\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)-\frac{1}{2} t^{2}\left(Y^{2} f\right)\left(\psi_{t}\left(\varphi_{s}(o)\right)\right) \\
& \quad+s(X f)\left(\varphi_{s}(o)\right)-\frac{1}{2} s^{2}\left(X^{2} f\right)\left(\varphi_{s}(o)\right) \\
& \sim s t(X Y f)\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)-s t(Y X f)\left(\psi_{t}\left(\varphi_{s}(o)\right)\right) .
\end{aligned}
$$

This last expression is obtained by pairing off the 1st and 5th term, the 3 rd and 7 th, the 2 nd and 6 th, and the 4 th and 8 th. Hence

$$
f\left(\gamma\left(t^{2}\right)\right)-f(o)=t^{2}([X, Y] f)(o)+O\left(t^{3}\right)
$$

A similar proof is given in Faber [1].

B. The Lie Derivative and the Interior Product

B.1. If the desired extension of $\theta(X)$ exists and if $C: \mathfrak{D}_{1}^{1}(M) \rightarrow C^{\infty}(M)$ is the contraction, then (i), (ii), (iii) imply

$$
(\theta(X) \omega)(Y)=X(\omega(Y))-\omega([X, Y]), \quad X, Y \in \mathfrak{D}^{1}(M)
$$

Thus we define $\theta(X)$ on $\mathfrak{D}_{1}(M)$ by this relation and note that $(\theta(X) \omega)(f Y)=f(\theta(X)(\omega))(Y)\left(f \in C^{\infty}(M)\right)$, so $\theta(X) \quad \mathfrak{D}_{1}(M) \subset \mathfrak{D}_{1}(M)$. If U is a coordinate neighborhood with coordinates $\left\{x_{1}, \ldots, x_{m}\right\}, \theta(X)$ induces an endomorphism of $C^{\infty}(U), \mathfrak{D}^{1}(U)$, and $\mathfrak{D}_{1}(U)$. Putting $X_{i}=$ $\partial / \partial x_{i}, \omega_{j}=d x_{j}$, each $T \in \mathfrak{D}_{s}^{r}(U)$ can be written

$$
T=\sum T_{(i),(j)} X_{i_{1}} \otimes \ldots \otimes X_{i_{r}} \otimes \omega_{j_{1}} \otimes \ldots \otimes \omega_{j_{s}}
$$

with unique coefficients $T_{(i),(j)} \in C^{\infty}(U)$. Now $\theta(X)$ is uniquely extended to $\mathfrak{D}(U)$ satisfying (i) and (ii). Property (iii) is then verified by induction on r and s. Finally, $\theta(X)$ is defined on $\mathcal{D}(M)$ by the condition $\theta(X) T \mid U=\theta(X)(T \mid U)$ (vertical bar denoting restriction) because as in the proof of Theorem 2.5 this condition is forced by the requirement that $\theta(X)$ should be a derivation.
B.2. The first part being obvious, we just verify $\Phi \cdot \omega=\left(\Phi^{-1}\right)^{*} \omega$. We may assume $\omega \in \mathfrak{D}_{1}(M)$. If $X \in \mathfrak{D}^{1}(M)$ and C is the contraction $X \otimes \omega \rightarrow \omega(X)$, then $\Phi \circ C=C \circ \Phi \quad$ implies $\quad(\Phi \cdot \omega)(X)=$ $\Phi\left(\omega\left(X^{\Phi-1}\right)\right)=\left(\left(\Phi^{-1}\right)^{*} \omega\right)(X)$.
B.3. The formula is obvious if $T=f \in C^{\infty}(M)$. Next let $T=$ $Y \in \mathfrak{D}^{1}(M)$. If $f \in C^{\infty}(M)$ and $q \in M$, we put $F(t, q)=f\left(g_{t} \cdot q\right)$ and have

$$
F(t, q)-F(0, q)=t \int_{0}^{1}\left(\frac{\partial F}{\partial t}\right)(s t, q) d s=t h(t, q)
$$

where $h \in C^{\infty}(\boldsymbol{R} \times M)$ and $h(0, q)=(X f)(q)$. Then

$$
\left(g_{t} \cdot Y\right)_{p} f=\left(Y\left(f \circ g_{t}\right)\right)\left(g_{t}^{-1} \cdot p\right)=(Y f)\left(g_{t}^{-1} \cdot p\right)+t(Y h)\left(t, g_{t}^{-1} \cdot p\right)
$$

so

$$
\lim _{t \rightarrow 0} \frac{1}{t}\left(Y-g_{t} \cdot Y\right)_{p} f=(X Y f)(p)-(Y X f)(p)
$$

so the formula holds for $T \in \mathcal{D}^{1}(M)$. But the endomorphism $T \rightarrow$ $\lim _{t \rightarrow 0} t^{-1}\left(T-g_{t} \cdot T\right)$ has properties (i), (ii), and (iii) of Exercise B.1; it coincides with $\theta(X)$ on $C^{\infty}(M)$ and on $\mathfrak{D}^{1}(M)$, hence on all of $\mathcal{D}(M)$ by the uniqueness in Exercise B.l.
B.4. For (i) we note that both sides are derivations of $\mathcal{D}(M)$ commuting with contractions, preserving type, and having the same effect on $\mathfrak{D}^{1}(M)$ and on $C^{\infty}(M)$. The argument of Exercise B.l shows that they coincide on $\mathfrak{D}(M)$.
(ii) If $\omega \in \mathfrak{D}_{r}(M), Y_{1}, \ldots, Y_{r} \in \mathfrak{D}^{1}(M)$, then by B.1,

$$
(\theta(X) \omega)\left(Y_{1}, \ldots, Y_{r}\right)=X\left(\omega\left(Y_{1}, \ldots, Y_{r}\right)\right)-\sum_{i} \omega\left(Y_{1}, \ldots,\left[X, Y_{i}\right], \ldots, Y_{r}\right)
$$

so $\theta(X)$ commutes with A.
(iii) Since $\theta(X)$ is a derivation of $\mathfrak{g}(M)$ and d is a skew-derivation (that is, satisfies (iv) in Theorem 2.5), the commutator $\theta(X) d-d \theta(X)$ is also a skew-derivation. Since it vanishes on f and $d f\left(f \in C^{\infty}(M)\right)$, it vanishes identically (cf. Exercise B.1). For B.1-B.4, cf. Palais [3].
B.5. This is done by the same method as in Exercise B.1.
B.6. For (i) we note that by (iii) in Exercise B.5, $i(X)^{2}$ is a derivation. Since it vanishes on $C^{\infty}(M)$ and $\mathfrak{D}_{1}(M)$, it vanishes identically; (ii) follows by induction; (iii) follows since both sides are skew-derivations which coincide on $C^{\infty}(M)$ and on $\mathfrak{N}_{1}(M)$; (iv) follows because both sides are derivations which coincide on $C^{\infty}(M)$ and on $\mathfrak{A}_{1}(M)$.

C. Affine Connections

C.1. M has a locally finite covering $\left\{U_{\alpha}\right\}_{\alpha \in A}$ by coordinate neighborhoods U_{α}. On U_{α} we construct an arbitrary Riemannian structure g_{α}. If $1=\Sigma_{\alpha} \varphi_{\alpha}$ is a partition of unity subordinate to the covering, then $\Sigma_{\alpha} \varphi_{\alpha} g_{\alpha}$ gives the desired Riemannian structure on M.
C.2. If Φ is an affine transformation and we write $d \Phi\left(\partial / \partial x_{j}\right)=$ $\Sigma_{i} a_{i j} \partial / \partial x_{i}$, then conditions ∇_{1} and ∇_{2} imply that each $a_{i j}$ is a constant. If A is the linear transformation $\left(a_{i j}\right)$, then $\Phi \circ A^{-1}$ has differential I, hence is a translation B, so $\Phi(X)=A X+B$. The converse is obvious.
C.3. We have $\Phi^{*} \omega_{j}^{i}=\Sigma_{k}\left(\Gamma_{k j}^{i} \circ \Phi\right) \Phi^{*} \omega^{k}$, so by $\left(5^{\prime}\right),(6),(7)$ in $\S 8$

$$
\Phi^{*} \omega_{j}^{i}=\sum_{k}\left(\Gamma_{k j}^{i} \circ \Phi\right)\left(a_{k} d t+t d a_{k}\right)=0
$$

This implies that $\Gamma_{k j}^{i} \equiv 0$ in normal coordinates, which is equivalent to the result stated in the exercise.
C.4. A direct verification shows that the mapping $\delta: \theta \rightarrow$ $\sum_{1}^{m} \omega_{i} \wedge \nabla_{x_{i}}(\theta)$ is a skew-derivation of $\mathfrak{g}(M)$ and that it coincides with d on $C^{\infty}(M)$. Next let $\theta \in \mathfrak{a}_{1}(M), X, Y \in \mathfrak{D}^{1}(M)$. Then, using (5), §7,

$$
\begin{aligned}
2 \delta \theta(X, Y) & =2 \sum_{i}\left(\omega_{i} \wedge \nabla_{x_{i}}(\theta)\right)(X, Y) \\
& =\sum_{i} \omega_{i}(X) \nabla_{x_{i}}(\theta)(Y)-\omega_{i}(Y) \nabla_{x_{i}}(\theta)(X) \\
& =\nabla_{X}(\theta)(Y)-\nabla_{Y}(\theta)(X) \\
& =X \cdot \theta(Y)-\theta\left(\nabla_{X}(Y)\right)-Y \cdot \theta(X)+\theta\left(\nabla_{Y}(X)\right)
\end{aligned}
$$

which since the torsion is 0 equals

$$
X \theta(Y)-Y \cdot \theta(X)-\theta([X, Y])=2 d \theta(X, Y)
$$

Thus $\delta=d$ on $\mathfrak{U}_{1}(M)$, hence by the above on all of $\mathfrak{X}(M)$.
C.5. No; an example is given by a circular cone with the vertex rounded off.
C.6. Using Props. 11.3 and 11.4 we obtain a mapping $\varphi: M \rightarrow N$ such that $d \varphi_{p}$ is an isometry for each $p \in M$. Thus $\varphi(M) \subset N$ is an open subset. Each geodesic in the manifold $\varphi(M)$ is indefinitely extendable, so $\varphi(M)$ is complete, whence φ maps M onto N. Now Lemma 13.4 implies that (M, φ) is a covering space of N, so M and N are isometric.

D. Submanifolds

D.1. Let $I: G_{\Phi} \rightarrow M \times N$ denote the identity mapping and $\pi: M \times N \rightarrow M$ the projection onto the first factor. Let $m \in M$ and $Z \in\left(G_{\Phi}\right)_{(m, \Phi(m)}$ such that $d I_{m}(Z)=0$. Then $Z=(d \varphi)_{m}(X)$ where $X \in M_{m}$. Thus $d \pi \circ d I \circ d \varphi(X)=0$. But since $\pi \circ I \circ \varphi$ is the identity mapping, this implies $X=0$, so $Z=0$ and I is regular.
D.2. Immediate from Lemma 14.1.
D.3. Consider the figure 8 given by the formula

$$
\gamma(t)=(\sin 2 t, \sin t) \quad(0 \leqslant t \leqslant 2 \pi)
$$

Let $f(s)$ be an increasing function on \boldsymbol{R} such that

$$
\lim _{s \rightarrow-\infty} f(s)=0, \quad f(0)=\pi, \quad \lim _{s \rightarrow+\infty} f(s)=2 \pi
$$

Then the map $s \rightarrow \gamma(f(s))$ is a bijection of \boldsymbol{R} onto the figure 8. Carrying the manifold structure of R over, we get a submanifold of R^{2} which is closed, yet does not carry the induced topology. Replacing γ by δ given by $\delta(t)=(-\sin 2 t$, sint $t)$, we get another manifold structure on the figure.
D.4. Suppose $\operatorname{dim} M<\operatorname{dim} N$. Using the notation of Prop. 3.2, let W be a compact neighborhood of p in M and $W \subset U$. By the countability assumption, countably many such W cover M. Thus by Lemma 3.1, Chapter II, for N, some such W contains an open set in N; contradiction.
D.5. For each $m \in M$ there exists by Prop. 3.2 an open neighborhood V_{m} of m in N and an extension of g from $V_{m} \cap M$ to a C^{∞} function G_{m} on V_{m}. The covering $\left\{V_{m}\right\}_{m \in M}, N-M$ of N has a countable locally finite refinement V_{1}, V_{2}, \ldots. Let $\varphi_{1}, \varphi_{2}, \ldots$ be the corresponding partition of unity. Let $\varphi_{i_{1}}, \varphi_{i_{2}}, \ldots$ be the subsequence of the (φ_{j}) whose supports intersect M, and for each $\varphi_{i_{p}}$ choose $m_{p} \in M$ such that $\operatorname{supp}\left(\varphi_{i_{p}}\right) \subset V_{m_{p}}$. Then $\Sigma_{p} G_{m_{p}} \varphi_{i_{p}}$ is the desired function G.
D.6. The "if" part is contained in Theorem 14.5 and the "only if" part is immediate from (2), Chapter V, §6.

E. Curvature

E.1. If (r, θ) are polar coordinates of a vector X in the tangent space M_{p}, the inverse of the map $(r, \theta) \rightarrow \operatorname{Exp}_{p} X$ gives the "geodesic polar coordinates" around p. Since the geodesics from p intersect sufficiently small circles around p orthogonally (Lemma 9.7), the Riemannian structure has the form $g=d r^{2}+\varphi(r, \theta)^{2} d \theta^{2}$. In these coordinates the Riemannian measure $f \rightarrow \int f \sqrt{\bar{g}} d x_{1} \ldots d x_{n}$ and the Laplace-Beltrami operator are, respectively, given by

$$
f \rightarrow \iint f(r, \theta) \varphi(r, \theta) d r d \theta
$$

and

$$
\Delta f=\frac{\partial^{2} f}{\partial r^{2}}+\varphi^{-1} \frac{\partial \varphi}{\partial r} \frac{\partial f}{\partial r}+\varphi^{-1} \frac{\partial}{\partial \theta}\left(\varphi^{-1} \frac{\partial f}{\partial \theta}\right) .
$$

In particular

$$
\Delta(\log r)=-\frac{1}{r^{2}}+\frac{1}{r \varphi} \frac{\partial \varphi}{\partial r}
$$

On the other hand, if (x, y) are the normal coordinates of $\operatorname{Exp}_{p} X$ such that

$$
r^{2}=x^{2}+y^{2}, \quad \tan \theta=\frac{y}{x}
$$

then, since $r d r=x d x+y d y, r^{2} d \theta=x d y-y d x$,

$$
g=r^{-4}\left[\left(x^{2} r^{2}+y^{2} \varphi^{2}\right) d x^{2}+2 x y\left(r^{2}-\varphi^{2}\right) d x d y+\left(y^{2} r^{2}+x^{2} \varphi^{2}\right) d y^{2}\right]
$$

so since the coefficients are smooth near $(x, y)=(0,0) \varphi^{2}$ has the form ${ }^{+}$

$$
\varphi^{2}=r^{2}+c r^{4}+\ldots
$$

where $c=c(p)$ is a constant. But then

$$
\lim _{r \rightarrow 0} \Delta(\log r)=c(p)
$$

On the other hand,

$$
A(r)=\int_{0}^{r} \int_{0}^{2 \pi} \varphi(t, \theta) d t d \theta
$$

so using the definition in $\S 12$ we find $K=-3 c(p)$ as stated.
This result is stated in Klein [1], p. 219, without proof (with opposite sign).
E.2. Let $X=\partial / \partial x_{1}$ and $Y=\partial / \partial x_{2}$ so γ_{ϵ} is formed by integral curves of $X, Y,-X,-Y$.

$$
\text { Let } \begin{aligned}
p=p_{0} & =(0,0, \ldots, 0) \\
p_{1} & =(\epsilon, 0, \ldots, 0) \\
p_{2} & =(\epsilon, \epsilon, \ldots, 0) \\
p_{3} & =(0, \epsilon, \ldots, 0)
\end{aligned}
$$

and $\tau_{i j}$ the parallel transport from p_{j} to p_{i} along γ_{ϵ}. Let T be any vector field on M, and write $T_{i}=T_{p_{i}}$. Then

$$
\begin{aligned}
& \tau_{03} \tau_{32} \tau_{21} \tau_{10} T_{0}-T_{0} \\
& \quad=\left(\tau_{03} \tau_{32} \tau_{21} \tau_{10} T_{0}-\tau_{03} \tau_{32} \tau_{21} T_{1}\right)+\left(\tau_{03} \tau_{32} \tau_{21} T_{1}-\tau_{03} \tau_{32} T_{2}\right) \\
& \quad+\left(\tau_{03} \tau_{32} T_{2}-\tau_{03} T_{3}\right)+\left(\tau_{03} T_{3}-T_{0}\right)
\end{aligned}
$$

[^0]We use Theorem 7.1 and write \sim when we omit terms of higher order in ϵ. Then our expression is

$$
\begin{aligned}
\sim & \tau_{03} \tau_{32} \tau_{21}\left[-\epsilon\left(\nabla_{X} T\right)_{1}+\frac{1}{2} \epsilon^{2}\left(\nabla_{X}^{2} T\right)_{1}\right] \\
& +\tau_{03} \tau_{32}\left[-\epsilon\left(\nabla_{Y} T\right)_{2}+\frac{1}{2} \epsilon^{2}\left(\nabla_{Y}^{2} T\right)_{2}\right] \\
& -\tau_{03} \tau_{32}\left[-\epsilon\left(\nabla_{X} T\right)_{2}+\frac{1}{2} \epsilon^{2}\left(\nabla_{X}^{2} T\right)_{2}\right] \\
& -\tau_{03}\left[-\epsilon\left(\nabla_{Y} T\right)_{3}+\frac{1}{2} \epsilon^{2}\left(\nabla_{Y}^{2} T\right)_{3}\right] .
\end{aligned}
$$

Combining now the 1 st and 5 th term, 2 nd and 6 th term, etc., this expression reduces to

$$
\sim \epsilon^{2} \tau_{03} \tau_{32}\left(\nabla_{Y}\left(\nabla_{X}(T)\right)\right)_{2}-\epsilon^{2} \tau_{03}\left(\nabla_{x}\left(\nabla_{Y}(T)\right)_{3}\right.
$$

which, since $[X, Y]=0$, reduces to

$$
\sim \epsilon^{2} \tau_{03}(R(Y, X) T)_{3} \sim \epsilon^{2}(R(Y, X) T)_{0} .
$$

This proof is a simplification of that of Faber [1]. See Laugwitz [1], $\S 10$ for another version of the result. For curvature and holonomy groups, see e.g. Ambrose and Singer [2].

F. Surfaces

F.1. Let Z be a vector field on S and $\tilde{X}, \tilde{Y}, \tilde{Z}$ vector fields on a neighborhood of s in R^{3} extending X, Y, and Z, respectively. The inner product \langle,$\rangle on \boldsymbol{R}^{3}$ induces a Riemannian structure g on S. If $\widetilde{\nabla}$ and ∇ denote the corresponding affine connections on R^{3} and S, respectively, we deduce from (2), §9

$$
\left\langle\tilde{Z}_{s}, \widetilde{\nabla}_{x}(\tilde{Y})_{s}\right\rangle=g\left(Z_{s}, \nabla_{X}(Y)_{s}\right)
$$

But

$$
\widetilde{\nabla}_{\mathfrak{X}}(\tilde{Y})_{s}=\lim _{t \rightarrow 0} \frac{1}{t}\left(Y_{\gamma(t)}-Y_{s}\right)
$$

so we obtain $\nabla=\nabla^{\prime}$; in particular ∇^{\prime} is an affine connection on S.
F.2. Let $s(u, v) \rightarrow(u, v)$ be local coordinates on S and if g denotes the Riemannian structure on S, put

$$
E=g\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial u}\right), \quad F=g\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right), \quad G=g\left(\frac{\partial}{\partial v}, \frac{\partial}{\partial v}\right) .
$$

Let $r(u, v)$ denote the vector from 0 to the point $s(u, v)$. Subscripts denoting partial derivatives, r_{u} and r_{v} span the tangent space at $s(u, v)$, and we may take the orientation such that

$$
\xi_{s(u, v)}=\frac{r_{u} \times r_{v}}{\left|r_{u} \times r_{v}\right|}
$$

\times denoting the cross product. We have

$$
\begin{aligned}
& \dot{\gamma}_{S}=r_{u} \dot{u}+r_{v} \dot{v} \\
& \ddot{\gamma}_{S}=r_{u u} \dot{u}^{2}+2 r_{u v} \dot{u} \dot{v}+r_{v v} \dot{v}^{2}+r_{u} \ddot{u}+r_{v} \ddot{v},
\end{aligned}
$$

and

$$
r_{u} \cdot r_{u}=E, \quad r_{u} \cdot r_{v}=F, \quad r_{v} \cdot r_{v}=G,
$$

whence

$$
\begin{array}{lll}
r_{u u} \cdot r_{u}=\frac{1}{2} E_{u}, & r_{u v} \cdot r_{u}=\frac{1}{2} E_{v}, & r_{v v} \cdot r_{v}=\frac{1}{2} G_{v} \\
r_{u v} \cdot r_{v}=\frac{1}{2} G_{u}, & r_{u u} \cdot r_{v}=F_{u}-\frac{1}{2} E_{v}, & r_{v v} \cdot r_{u}=F_{v}-\frac{1}{2} G_{u}
\end{array}
$$

From this it is clear that the geodesic curvature can be expressed in terms of $\dot{u}, \dot{v}, \ddot{u}, \ddot{v}, E, F, G$, and their derivatives, and therefore has the invariance property stated.
F.3. We first recall that under the orthogonal projection P of \boldsymbol{R}^{3} on the tangent space $S_{\gamma_{s}(t)}$ the curve $P \circ \gamma_{s}$ has curvature in $\gamma_{s}(t)$ equal to the geodesic curvature of γ_{s} at $\gamma_{s}(t)$. So in order to avoid discussing developable surfaces we define the rolling in the problem as follows. Let $\pi=S_{\gamma_{S}\left(t_{0}\right)}$ and let $t \rightarrow \gamma_{\pi}(t)$ be the curve in π such that

$$
\gamma_{\pi}\left(t_{0}\right)=\gamma_{s}\left(t_{0}\right), \quad \dot{\gamma}_{\pi}\left(t_{0}\right)=\dot{\gamma}_{s}\left(t_{0}\right)
$$

($t-t_{0}$ is the arc-parameter measured from $\gamma_{\pi}\left(t_{0}\right)$) and such that the curvature of γ_{π} at $\gamma_{\pi}(t)$ is the geodesic curvature of γ_{s} at $\gamma_{s}(t)$. The rolling is understood as the family of isometries $S_{\gamma_{S}(t)} \rightarrow \pi_{\gamma_{\pi}(t)}$ of the tangent planes such that the vector $\dot{\gamma}_{s}(t)$ is mapped onto $\dot{\gamma}_{\pi}(t)$. Under these maps a Euclidean parallel family of unit vectors along γ_{π} corresponds to a family $Y(t) \in S_{\gamma_{s}(t)}$. We must show that this family is parallel in the sense of (1), §5. Let τ denote the angle between $\dot{\gamma}_{s}(t)$ and $Y(t)$. Then

$$
\begin{aligned}
\dot{\tau}(t) & =- \text { curvature of } \gamma_{\pi} \text { at } \gamma_{\pi}(t) \\
& =- \text { geodesic curvature of } \gamma_{S} \text { at } \gamma_{S}(t) \\
& =-\left(\xi \times \dot{\gamma}_{S} \cdot \ddot{\gamma}_{S}\right)(t) .
\end{aligned}
$$

We can choose the coordinates (u, v) near $\gamma_{s}\left(t_{0}\right)$ such that for t close to t_{0}

$$
u\left(\gamma_{s}(t)\right)=t, \quad v\left(\gamma_{s}(t)\right)=\text { const. }, \quad g_{\gamma_{S}(t)}\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right)=0
$$

(For example, let $r \rightarrow \delta_{t}(r)$ be a geodesic in S starting at $\gamma_{s}(t)$ perpendicular to γ_{s}; small pieces of these geodesics fill up (disjointly) a neigborhood of $\gamma_{s}\left(t_{0}\right)$; the mapping $\delta_{t}(r) \rightarrow(t, r)$ is a coordinate system with the desired properties.) Writing $Y(t)=Y^{1}(t) r_{u}+Y^{2}(t) r_{v} \quad$ (using notation from previous exercise), we have

$$
\begin{equation*}
Y^{1}(t)=\cos \tau(t), \quad Y^{2}(t)=G^{-1 / 2} \sin \tau(t) \tag{1}
\end{equation*}
$$

and shall now verify (2), §5. By (2), §9 we have

$$
2 \sum_{l} g_{i k} \Gamma_{i j}^{l}=\frac{\partial}{\partial x_{i}} g_{j k}+\frac{\partial}{\partial x_{j}} g_{i k}-\frac{\partial}{\partial x_{k}} g_{i j}
$$

On the curve γ_{s} we have $E \equiv 1, F \equiv 0$, so

$$
\begin{array}{lll}
\Gamma_{11}^{1}=0, & \Gamma_{11}^{2}=-\frac{E_{v}}{2 G}, & \Gamma_{12}^{1}=\frac{E_{v}}{2} \\
\Gamma_{22}^{1}=F_{v}-\frac{G_{u}}{2}, & \Gamma_{22}^{2}=\frac{G_{v}}{2 G}, & \Gamma_{12}^{2}=\frac{G_{u}}{2 G} .
\end{array}
$$

Thus we must verify

$$
\begin{equation*}
\dot{Y}^{1}+\frac{1}{2} E_{v} Y^{2}=0, \quad \dot{Y}^{2}-\frac{E_{v}}{2 G} Y^{1}+\frac{G_{u}}{2 G} Y^{2}=0 . \tag{2}
\end{equation*}
$$

But using formulas from Exercise F. 2 we find

$$
\left.\dot{\tau}(t)=-\left(\xi \times \dot{\gamma}_{S} \cdot \ddot{\gamma}_{S}\right)(t)=\frac{1}{2}\left(G^{-1 / 2} E_{v}\right)\left(\gamma_{S}(t)\right)\right)
$$

and now equations (2) follow directly from (1).

G. The Hyperbolic Plane

1. (i) and (ii) are obvious. (iii) is clear since

$$
\frac{x^{\prime}(t)^{2}}{\left(1-x(t)^{2}\right)^{2}} \leqslant \frac{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}{\left(1-x(t)^{2}-y(t)^{2}\right)^{2}}
$$

where $\gamma(t)=(x(t), y(t))$. For (iv) let $z \in D, u \in D_{z}$, and let $z(t)$ be a curve with $z(0)=z, z^{\prime}(0)=u$. Then

$$
d \varphi_{z}(u)=\left\{\frac{d}{d t} \varphi(z(t))\right\}_{t=0}=\frac{z^{\prime}(0)}{(\bar{b} z+\bar{a})^{2}} \quad \text { at } \quad \varphi \cdot z
$$

and $g(d \varphi(u), d \varphi(u))=g(u, u)$ now follows by direct computation. Now (v) follows since φ is conformal and maps lines into circles. The first relation in (vi) is immediate; and writing the expression for $d(0, x)$ as a cross ratio of the points $-1,0, x, 1$, the expression for $d\left(z_{1}, z_{2}\right)$ follows since φ in (iv) preserves cross ratio. For (vii) let r be any isometry of D. Then there exists a φ as in (iv) such that $\varphi \tau^{-1}$ leaves the x-axis pointwise fixed. But then $\varphi \tau^{-1}$ is either the identity or the complex conjugation $z \rightarrow \bar{z}$. For (viii) we note that if $r=d(0, z)$, then $|z|=\tanh r$; so the formula for g follows from (ii). Part (ix) follows from
$v=\frac{1-|z|^{2}}{|z-i|^{2}}, \quad d w=-2 \frac{d z}{(z-i)^{2}}, \quad d \bar{w}=-2 \frac{d \bar{z}}{(\bar{z}+i)^{2}}$.

[^0]: + See "Some Details," p. 586.

