FORMULARIUM FOR DIVISOR CLASSES

Exercise 0.1. Let

$$
\pi_{n+1}: \overline{\mathrm{M}}_{g, n+1} \rightarrow \overline{\mathrm{M}}_{g, n}
$$

be the morphism that forgets the $n+1$ st marked point. Prove the following formulae:
(1) $\pi_{n+1}^{*}(\kappa)=\kappa-\psi_{n+1}$.
(2) $\pi_{n+1}^{*}\left(\psi_{i}\right)=\psi_{i}-\delta_{0,\{i, n+1\}}$ for $i \leq n$.
(3) $\pi_{n+1}^{*}\left(\delta_{i r r}\right)=\delta_{i r r}$.
(4) $\pi_{n+1}^{*}\left(\delta_{h, S}\right)=\delta_{h, S}+\delta_{h, S \cup\{n+1\}}$.

Exercise 0.2. Let

$$
\xi: \overline{\mathrm{M}}_{g-1, n \cup\{x, y\}} \rightarrow \overline{\mathrm{M}}_{g, n}
$$

be the morphism that glues the two points x, y. Show that ξ pulls back the tautological classes as follows:
(1) $\xi^{*}(\kappa)=\kappa$.
(2) $\xi^{*}\left(\phi_{i}\right)=\phi_{i}$ for $i \leq n$.
(3) $\xi^{*}\left(\delta_{i r r}\right)=\delta_{i r r}-\psi_{x}-\psi_{y}+\sum_{x \in S, y \notin S} \delta_{g, S}$
(4) $\xi^{*}\left(\delta_{h, S}\right)= \begin{cases}\delta_{h, S} & \text { if } g=2 h, \quad n=0 \\ \delta_{h, S}+\delta_{h-1, S \cup\{x, y\}} & \text { otherwise }\end{cases}$

Exercise 0.3. Let

$$
a t_{h, S}: \overline{\mathrm{M}}_{g-h, n-S \cup\{x\}} \rightarrow \overline{\mathrm{M}}_{g, n}
$$

be the morphism obtained by attaching a fixed curve of genus h and marking $S \cup\{y\}$ to curves in $\overline{\mathrm{M}}_{g-h, n-S \cup\{x\}}$ by identifying x and y. Show that the following relations hold:
(1) $a t_{h, S}^{*}(\kappa)=\kappa$.
(2) $a t_{h, S}^{*}\left(\phi_{i}\right)= \begin{cases}\phi_{i} & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}$
(3) $a t_{h, S}^{*}\left(\delta_{i r r}\right)=\delta_{i r r}$.
(4) If $S=\{1, \ldots, n\}$, then

$$
a t_{h, S}^{*}\left(\delta_{k, T}\right)= \begin{cases}\delta_{2 h-g, S \cup\{x\}}-\psi_{x} & \text { if } k=h, \# T=n, \text { or } k=g-h, \# T=0 \\ \delta_{k, T}+\delta_{k+h-g, T \cup\{x\}} & \text { otherwise }\end{cases}
$$

(5) If $S \neq\{1, \ldots, n\}$, then

$$
a t_{h, S}^{*}\left(\delta_{k, T}\right)= \begin{cases}-\psi_{x} & \text { if }(k, T)=(h, S) \text { or }(k, T)=\left(g-h, S^{c}\right) \\ \delta_{k, T} & \text { if } T \subset S \text { and }(k, T) \neq(h, S) \\ \delta_{k+h-g,\left(T \backslash S^{c}\right) \cup\{x\}} & \text { if } S^{c} \subset T \text { and }(k, T) \neq\left(g-h, S^{c}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Exercise 0.4. Using the previous exercises and our calculations in class determine the divisor class relations between κ, ψ and δ classes in $\overline{\mathrm{M}}_{1, n}$ and $\overline{\mathrm{M}}_{2, n}$.

