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18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) 
Cohomology of projective space (updated April 14) 

Using Čech cohomology, we now give Serre’s computation of the cohomology of the 
twisting sheaves on projective space, and deduce from it Serre’s finiteness theorem. See also 
Hartshorne III.5 (except that you can ignore the last paragraph at the bottom of page 227, 
which is irrelevant). 

1 Finitely generated sheaves 

Let (X, OX ) be a locally ringed space. An OX -module F is finitely generated if for each 
point x ∈ X, there exist an open subset U of X containing x, a nonnegative integer n, and 
a surjection O⊕n|U → F|U of OX -modules. (In other words, F is locally generated by finite X 

collections of sections.) 

Lemma. Let A be a ring and let M be an A-module. Then M is finite as an A-module if 
and only if the quasicoherent sheaf M̃ is finitely generated. 

Proof. It is clear that finiteness of M implies that M̃ is finitely generated. Conversely, 
suppose M̃ is finitely generated. We can then cover X with distinguished opens Xi = D(fi) 

on each of which M̃ |Xi = M̃fi is generated by finitely many sections mij /fi

hj . Since X is 
quasicompact, we need only finitely many i, and the resulting mij generate M because they 
do so stalkwise. 

Beware that Hartshorne says a sheaf is coherent if it is quasicoherent and finitely gen
erated. This is not the correct definition, but it does agree with the correct definition on 
a locally noetherian scheme, which is the only place he ever uses it. I’ll give the proper 
definition of a coherent sheaf later. 

2 Odds and ends 

We will make frequent use of the following fact. 

Lemma. Let f : Z → X be a closed immersion of locally ringed spaces, and let F be a sheaf 
of abelian groups on Z. Then there are canonical isomorphisms 

H i(Z, F) → H i(X, f∗F) (i ≥ 0). 

Proof. We already know that f∗ preserves flasqueness (previous exercise). We can also see 
that f∗ is exact by its behavior on stalks: 

Fx x ∈ Z 
(f∗F)x = 

0 x /∈ Z. 
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Finally, we note that we have a canonical isomorphism at the level of H0 . If we then 
start with a flasque resolution of F , we can either push forward (obtaining another flasque 
resolution) and then take global sections, or take global sections directly, to obtain the same 
complexes, and in particular the same cohomology. 

This will very often allow us to carry out induction arguments on dimension, by setting 
up a short exact sequence of sheaves on X in which one member is the direct image of a 
sheaf on Z. 

Lemma. Let X be a noetherian topological space, and let (Fj) be a direct system of abelian 
sheaves. Then the natural functoriality maps 

lim H · (X, Fj ) → H · (X, limFj)−→ −→ 

(coming from the maps Fj → limFj) are isomorphisms. 
−→ 

Proof. Fix the index set for the direct system. Then both sides are cohomological functors 
on the category of direct systems of abelian sheaves for that index set, and the noetherian 
hypothesis forces the H0 terms to match (earlier exercise), so it suffices to check that they 
are both effaceable. For that, it suffices to observe that there is a functorial way to embed 
any sheaf of abelian groups on X into a flasque sheaf; for instance, see Hartshorne exercise 
II.1.16(e). 

3 The result 

Before stating the theorem, I need to make one general observation. Let F , G be sheaves 
of OX -modules on a scheme X, with F quasicoherent and flat. I claim there is a natural 
homomorphism 

H0(X, F) ⊗OX H
r(X, G) → Hr(X, F ⊗OX G) 

of Γ(X, OX )-modules for any nonnegative integer r. It comes from the facts that: 

•	 both sides are cohomological functors in G (using the fact that F is flat on the right 
side, and the fact that H0(X, F) is flat over O(X) on the left side); 

•	 the left side is effaceable and hence universal; 

•	 there is a natural map for r = 0. 

We can also compute this map using Čech complexes. 

Theorem (Serre). Let A be any ring, fix an integer r ≥ 1, and put X = P
r and S = A 

A[x0, . . . , xn]. 

(a) The natural map 

S → H0(X, OX (n)) 
n∈Z 

is an isomorphism of graded S-modules. 
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(b) For 0 < i < r and n ∈ Z, we have H i(X, OX (n)) = 0. 

(c) We have Hr(X, OX (−r − 1)) ∼ A.= 

(d) The natural A-bilinear map 

H0(X, OX (n)) × Hr(X, OX (−n − r − 1)) =→ Hr(X, OX (−r − 1)) ∼ A 

is a perfect pairing of finitely generated free A-modules, for each n ∈ Z. (That is, each 
side is isomorphic to Hom of the other side into A; in particular, they have the same 
rank.) 

(e) For i > r, we have H i(X, OX (n)) = 0. 

Proof of the theorem. It is enough to compute the cohomology of the sheaf F = ⊕n∈ZOX (n) 
and keep track of the grading by n. (This can be seen by applying the previous lemma, but 
this forces a noetherian hypothesis. But it is also clear without such a hypothesis, because 
the Čech cohomology computation we are about to do commutes with the direct sums.) 
For starters, recall that we checked part (a) earlier; see for instance Hartshorne Proposition 
II.5.13. 

We use the obvious Cech resolution by ˇ the D+(xi) for i = 0, . . . , r. Since the complex 
vanishes above degree r, we immediately get (e). (This also follows from a general theorem of 
Grothendieck; see Hartshorne Theorem III.2.7.) To compute Hr(X, F), we need the cokernel 
of 

r 

dr−1 : Sx0···xk−1xk+1 ···xr → Sx0···xr . 
k=0 

± ± e0 erView Sx0···xr = A[x0 , . . . , xr ] as the free A-module generated by the monomials x0 · · · xr 

with e0, . . . , er ∈ Z. The image under dr−1 of the k-th factor of the product is precisely the 
span of the monomials with ek ≥ 0. Hence Hr(X, F) is the free A-module generated by 
the x e0 

0 · · · xe
r 
r with e0, . . . , er < 0, graded by degree. In particular, in degree −r − 1, we see 

−1 −1exactly one monomial x0 · · · xr , proving (c). 
To see (d), we must make the pairing explicit. First, note that there is nothing to check 

if n < 0, since then H0(X, OX (n)) = S−n = 0 obviously, and H0(X, OX (−n − r − 1)) = 0 
because there are no monomials of degree greater than −r − 1 with all exponents negative. 
So assume hereafter n ≥ 0. If we identify H0(X, OX (n)) with the A-span of the monomials 
in x0, . . . , xr (with nonnegative powers) of degree n, then the pairing with Hr(X, F) (the 

−1 −1A-span of the monomials of degree −n −r −1 in x0 , . . . , xr ) is to simply multiply together 
and throw away everything except the term x −0

1 · · · x−
r 

1 . This implies (c). 
It remains to prove (b), which we do by induction on r. The base case is r = 1, for which 

there is nothing to check because 0 < i < r is impossible. Before running the induction, we 
note that if we localize the Cech complex by inverting ˇ xr, we get the corresponding Čech 
complex on the open set D+(xr), which is affine. So the localized Čech complex must be 
acyclic since it computes the cohomology of a quasicoherent sheaf on an affine scheme. On 
the other hand, localizing in xr is exact, so it commutes with taking cohomology; that is, 
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the localization H i(X, F)xr = 0 for i > 0. In other words, every element of H i(X, F) is 
annihilated by some power of xr. 

It thus suffices to show that for 0 < i < r, multiplication by any power of xr is injective 
on H i(X, F); it also suffices to check multiplication by xr itself. Look at the exact sequence 

×xr0 → S(−1) → S → S/(xr) → 0 

of graded S-modules. Writing H ∼ PA
r−1 for the hyperplane xr = 0 and j : H → X for the = 

inclusion, this sheafifies to 

0 → F(−1) → F → ⊕n∈Z(j∗OH )(n) → 0. 

Let’s take the long exact sequence in homology. In degree 0 we get back our original sequence, 
so the connecting homomorphism into H1(X, F(−1)) is zero. That (which holds even in 
the base case) plus the induction hypothesis, which implies that H i(X, ⊕n(j∗OH )(n)) = 
H i(H, ⊕nOH (n)) = 0 for 0 < i < r − 1, gives us the bijectivity of multiplication by xr on 
H i(X, F) for i = 0, . . . , r−2 and injectivity for i = r−1. This is enough to get H i(X, F) = 0 
for 0 < i < r. 

4 Finiteness of cohomology on projective schemes 

Using the previous calculation, Serre was able to derive a powerful finiteness and vanish
ing theorem for cohomology on projective schemes. First, we need another result of Serre 
(Hartshorne II.5.17 except without the noetherian hypothesis). 

Theorem. Let A be a ring, let X → Pr be a closed immersion for some r ≥ 1, and let A 

OX (1) be the pullback of the twisting sheaf. Let F be a finitely generated quasicoherent sheaf 
on X. Then there exists an integer n0 such that for all n ≥ n0, F(n) is generated by a finite 
number of global sections. 

Proof. By replacing F by its direct image, we reduce to the case X = PA
r itself. For 

i = 0, . . . , r, we have F|D+(xi) = M̃i for some finitely generated module Mi over Bi = 
A[x0/xi, . . . , xr/xi]. For any s ∈ Mi, for n ≥ n0 for some n0 depending on s, xi

ns is a section 
of F(n). For n0 large enough, we can lift a set of generators of each Mi to sections of F(n) 
whenever n ≥ n0; this proves the claim. 

Corollary. With notation as in the previous theorem, we obtain a surjection ⊕m
i=1O(n) → F 

for some n ∈ Z. 

For this I need a noetherian hypothesis, but only until we define coherent sheaves. 

Theorem (Serre). Let A be a noetherian ring, let X → Pr be a closed immersion for some A 

r ≥ 1, and let OX (1) be the pullback of the twisting sheaf. Let F be a finitely generated 
quasicoherent sheaf on X. 
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(a) The A-modules H i(X, F) are finitely generated for i ≥ 0. 

(b) There exists an integer n0 (depending on F) such that for each i > 0 and n ≥ n0, 
H i(X, F(n)) = 0. 

Proof. We proceed by descending induction on i. For i > r, we have H i(X, F) = 0 because 
X admits a good over by at most r + 1 open affines. 

By the previous corollary, we can write F as a quotient of some sheaf E which is a direct 
sum of twisting sheaves. Let G be the kernel: 

0 → G → E → F → 0 

Thanks to the noetherian hypothesis, we may conclude that G is also finitely generated. The 
long exact sequence in cohomology gives: 

· · · → H i(X, E) → H i(X, F) → H i+1(X, G) → · · · 

Given the claim for i + 1, we know that the right term is finitely generated as an A-module. 
The left term is a sum of things of the form H i(X, OX (n)) for various n ∈ Z, and we already 
computed those and saw that they were finitely generated as A-modules. Again since A is 
noetherian, we can conclude that the middle module is finitely generated. This proves (a). 

To get (b), twist by n and then again take the long exact sequence in cohomology: 

· · · → H i(X, E(n)) → H i(X, F(n)) → H i+1(X, G(n)) → · · · 

For n large, the right module vanishes by the induction hypothesis, while the left module 
vanishes by the explicit calculation, so the middle group vanishes. 
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