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18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) 
Cohomology of quasicoherent sheaves (updated 25 Apr 09) 

There is one more fundamental theorem about affine schemes! Here it is. 

1 The theorem, and a bogus proof 

Let’s start with the statement of the fourth fundamental theorem of affine schemes. 

Theorem. Let X be an affine scheme and let F be a quasicoherent sheaf on X. Then 
H i(X,F) = 0 for i > 0, that is, F is acyclic for sheaf cohomology. 

Here is how not to prove this theorem. 

Bogus proof of the theorem. Put X = Spec A. From the earlier fundamental theorems of 
affine schemes, we know we can write F = M̃ for some A-module M . Since ModA has 
enough injectives, we can find a monomorphism M → I with I an injective A-module. Put 
N = I/M . Again by the earlier fundamental theorems of affine schemes, we know that the 
exact sequence 

0 → M → I → I/M → 0 

of A-modules is precisely what you get by taking global sections of the exact sequence 

0 → M̃ → Ĩ → ˜ → 0.I/M 

So in the long exact sequence in cohomology, the connecting homomorphism into H1(X, M̃) 
is zero. On the other hand, H i(X, Ĩ) = 0 for all i > 0 since Ĩ is injective, so H1(X, M̃) is 

forced to be zero. Moreover, for i > 1, H i(X, M̃) ∼ H i−1(X, �= I/M), so we may prove the 
higher vanishing by dimension shifting. 

What’s wrong with this proof? The problem is that while the injectivity of I in ModA 

implies the injectivity of I in the category of quasicoherent OX-modules, it does not imply 
injectivity in the category of arbitrary OX-modules, or of sheaves of abelian groups on X. 
In particular, it is unclear whether injectivity of I implies that I is flasque. One can at least 
show that I is “basically flasque”, in that the restriction from Γ(X, I) = I to Γ(D(f), I) = If 

is surjective, but this isn’t really enough to do anything useful. 
There are two ways to fix this. One way (used in Hartshorne, and also in the book by 

Ueno that I recommended earlier) is to restrict attention to noetherian rings, and then prove 
that an injective module does indeed give rise to a flasque sheaf. The other way (used in 
EGA) is to compute with Čech cohomology instead of sheaf cohomology, so that you can 
deal only with finite covers by distinguished opens. That’s what I’ll do here. 

First, however, I should mention that there is an easy argument to show that H1 vanishes. 
The following is close to the third fundamental theorem of affine schemes; see Hartshorne 
Proposition II.5.6 for the proof. (Since I won’t use this to prove the theorem, you may 
instead view it as a corollary of the theorem.) 
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Lemma. Let X = Spec A be an affine scheme. Let 

0 → F1 → F → F2 → 0 

be an exact sequence of OX-modules such that F1 is quasicoherent (but don’t assume anything 
about the other two). Then the sequence 

0 → Γ(X,F1) → Γ(X,F) → Γ(X,F2) → 0 

is exact. 

This implies that the connecting homomorphism H0(X,F2) → H1(X,F1) is zero, so 
H1(X,F1) injects into H1(X,F). If we then choose F to be injective, we deduce H1(X,F1) = 
0. 

2 Applications 

Before proving the theorem, let me mention some corollaries. First, from the Čech cohomol
ogy discussion, we deduce the following. 

Corollary. Let X be a scheme and let U = {Ui}i∈I be an open cover of X. Suppose that for 
each finite subset J ⊆ I, the intersection UJ = ∩j∈JUj is affine. Then for any quasicoherent 
sheaf F on X, the sheaf cohomology of F is computed by the Čech cohomology for the cover 
U; that is, 

H i(X,F) = Ȟ i(U,F). 

Recall that inside a separated scheme, the intersection of any two open affines is again 
affine. We thus have the following; I’ll illustrate next time by using this to compute the 
cohomology of the sheaves O(n) on projective space. 

Corollary. Let X be a separated scheme and let U = {Ui}i∈I be an open affine cover of X. 
Then for any quasicoherent sheaf F on X, 

H i(X,F) = Ȟ i(U,F). 

Here is an even more specialized corollary, which in itself is not so useful. I mention it 
because I will prove this directly and use it as a lemma to prove the whole theorem. 

Corollary. Let A be a ring and choose f1, . . . , fn ∈ A which generate the unit ideal. Let 
U be the open cover of X = Spec A by D(fi) for i = 1, . . . , n. Then for any A-module M , 
Ȟ0(U, M̃) = M and Ȟ i(U, M̃) = 0 for i > 0. 
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3 A correct proof of the theorem 

Following Grothendieck (and I think Serre before him, in the context of varieties), we will 
prove the last corollary first, and then use that to prove the theorem. So our first order of 
business is to show that the complex 

0 → M → Č0(U, M̃) → Č1(U, M̃) → · · · 

is exact. Remember that this complex came from the complex of sheaves 

0 → M̃ → Č0(U, M̃) → Č1(U, M̃) → · · · 

by taking global sections. We proved in the Čech cohomology lecture that this sequence 
of sheaves is exact (by computing at stalks). Moreover, each of the constituent sheaves is 
quasicoherent, for the following reason. Each sheaf in the sequence equals a direct sum of 
sheaves each of the form jU∗(M̃ |U) for U an intersection of some of the Uj . In particular, 
each such intersection has the form D(g) for some g ∈ A. But this sheaf is simply the 
quasicoherent sheaf associated to the A-module Mg. 

Since we have an exact sequence of quasicoherent sheaves, taking global sections gives us 
an exact sequence of A-modules. This proves the corollary. So now we know that for any 
finite cover U of Spec A by distinguished opens, 

Ȟ0(U, M̃) = M, Ȟ i(U, M̃) = 0 (i > 0). 

The same holds if we take the direct limit over finite covers by distinguished opens. However, 
this gives the same result as taking the direct limit over all open covers because any cover 
can be refined to a finite cover by distinguished opens. We conclude that 

Ȟ0(X, M̃) = M, Ȟ i(X, M̃) = 0 (i > 0); 

although the theorem that says that the direct limit Čech cohomology also computes sheaf 
cohomology doesn’t apply (because X is not Hausdorff), one can still show that this implies 

H0(X, M̃) = M, H i(X, M̃) = 0 (i > 0) 

using the following theorem of Cartan, applied with B being the collection of distinguished 
open affines. 

Theorem (Cartan). Let X be a topological space. Let B be a basis of X closed under 
pairwise intersections. Let F be a sheaf of abelian groups on X such that Ȟ i(U,F) = 0 for 
all U ∈ B. Then Ȟ i(X,F) is naturally isomorphic to H i(X,F) for all i ≥ 0. 

We will prove this in the next section. It can also be proved using spectral sequences; 
see the optional handout. 
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4 Comparison of Čech and sheaf cohomology 

Before proving Cartan’s theorem, here is a lemma which generalizes a fact we already know 
about flasque sheaves. 

Lemma. Let X be a topological space. Let F be a sheaf of abelian groups on X such that 
Ȟ1(X,F) = 0. Then for any short exact sequence 

0 → F → G → H → 0 

of sheaves, 
0 → Γ(X,F) → Γ(X,G) → Γ(X,H) → 0 

is exact. 

Proof. (proof suggested by Fucheng Tan) We need only check surjectivity on the right. Let 
s ∈ Γ(X,H) be any section; let U = {Ui}i∈I be an open cover of X such that for each i ∈ I, 
s|Ui lifts to a section ti ∈ Γ(Ui,G). For i, j ∈ I, put 

uij = ti|Ui∩Uj − tj |Ui∩Uj ∈ Γ(Ui ∩ Uj ,G). 

Since uij has zero image in Γ(Ui ∩ Uj ,G), we may also view as an element of Γ(Ui ∩ Uj ,F). 
With this convention, we see that the uij form a Čech 1-cocycle of F for the open cover U. 

Before proceeding, note that there is a natural way to replace the above data for one 
cover U with a refinement V = {Vj}j∈J . Namely, the refinement comes by definition with a 
map λ : J → I such that Vj ⊆ Uλ(j) for each j. To pass from U to V: 

•	 replace the collection of the ti for i ∈ I with the collection of the tλ(j)|Vj for j ∈ I; 

•	 replace the collection of the tij for i, j ∈ I with the collection of the uλ(k)λ(l)|Vk∩Vj for 
k, l ∈ I. 

To avoid excess notation, we will speak of “replacing U by a refinement” which will also be 
labeled U. 

Since Ȟ1(X,F) = 0 by hypothesis, we can replace U by a refinement in such a way that 
uij become a ˇ vi ∈ Γ(Ui,F) such that Cech 1-coboundary. This means that there are sections 

vi|Ui∩Uj − vj |Ui∩Uj = uij (i, j ∈ I). 

For i ∈ I, we now form 
wi = ti − vi ∈ Γ(Ui,G). 

These sections have the property that on one hand, the image of wi in Γ(Ui,H) equals s|Ui 

(since vi, having come from F , maps to zero in H), and on the other hand, 

wi|Ui∩Uj − wj|Ui∩Uj = (ti|Ui∩Uj − vi|Ui∩Uj ) − (tj |Ui∩Uj − vj |Ui∩Uj ) 

= (ti|Ui∩Uj − tj |Ui∩Uj ) − (vi|Ui∩Uj − vj |Ui∩Uj ) 

= uij − uij = 0. 

Hence the wi glue to a section w ∈ Γ(X,G) lifting s, as desired. 
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Proof of Cartan’s theorem. The claim is true for i = 0 because of the sheaf axiom. We use 
this as a basis for induction on i, using dimension shifting. Assume that for some i > 0, the 
claim is true for every value less than i. Choose a short exact sequence 

0 → F → G → H → 0 

with G flasque. By the previous lemma, for any U ∈ B, 

0 → Γ(U,F) → Γ(U,G) → Γ(U,H) → 0 

is exact. Let U = {Ui}i∈I be an open cover of X by basic open sets. Since B is closed under 
pairwise intersections, it follows that 

0 → Č .(U,F) → Č .(U,G) → Č .(U,H) → 0 

is an exact sequence of complexes. Since every open cover can be refined to an open cover 
by basic opens, taking direct limits over all covers is the same as taking direct limits over 
basic open covers, which means that 

0 → Č .(X,F) → Č .(X,G) → Č .(X,H) → 0 

is again an exact sequence of complexes. The same holds if we replace X by any basic open 
set U , by the same reasoning. 

We now take the long exact sequence in cohomology associated to this short exact se
quence of complexes, and compare it to the long exact sequence in sheaf cohomology. We 
get the diagram 

· · · �� Ȟ i−1(X,G) ��

��

Ȟ i−1(X,H) ��

��

Ȟ i(X,F) ��

��

Ȟ i(X,G) ��

��

· · · 

· · · �� H i−1(X,G) �� H i−1(X,H) �� H i(X,F) �� H i(X,G) �� · · · 

We first notice that Ȟ i(X,G) = H i(X,G) = 0 because G is flasque. If we replace X by 
a basic open set U and then look at the top sequence, we see that for i > 1, Ȟ i−1(U,H) 
is sandwiched between two zero groups, so it is also zero. That is, H also satisfies the 
hypothesis of the theorem. 

We may now argue by dimension shifting as follows. The first vertical arrow is an 
isomorphism (for i = 1 this holds by the sheaf axiom, otherwise both groups vanish), the 
second vertical arrows is an isomorphism by the induction hypothesis, and the fourth vertical 
arrow is the zero map between zero groups. The five lemma thus implies that the third arrow 
is an isomorphism. 
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