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18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009)

Sheaf cohomology (updated 13 Apr 09)


In the previous lecture, we discussed the construction of derived functors for left exact 
additive functors out of on an abelian category that has enough injectives. In this lecture, 
we specialize to the case of the global sections functor for sheaves on a locally ringed space, 
and thus obtain the definition of sheaf cohomology. 

1 Having enough injectives 

I thought I assigned this as homework, but apparently not, so here is the proof. 

Lemma. The category Ab has enough injectives. 

Proof. It has been assigned as an exercise that an abelian group G is injective if and only if 
it is divisible, i.e., if the multiplication by n maps are surjective for all positive integers n. 

It remains to show that every group G is isomorphic to a subgroup of a divisible abelian 
group. For instance, write G = F/H where F is a free abelian group, then embed G into 
(F �Z Q)/H. If you want something more canonical, take F to be the free abelian group 
generated by the elements of G, with the map G ⊕ F taking each g � G to the generator 
of F indexed by g (a/k/a the adjunction morphism for the forgetful functor Ab ⊕ Set). 

There isn’t quite as nice an argument for ModR because we don’t have as simple a 
description of the injective modules. One proof that ModR has enough injectives is assigned 
as an exercise; another will be given using Grothendieck’s criterion later in this lecture. 

2 Categories of sheaves have enough injectives 

Let X be a locally ringed space, let C be an abelian category, and let D be the category 
of sheaves on X with values in C; then D is again an abelian category. However, in order 
to use the definition of derived functors, we need to know that D has enough injectives, 
i.e., that for any object A � D, there exists a monomorphism A ⊕ I with I injective. I 
should certainly assume that C itself has enough injectives; but then how can we go about 
constructing injective objects in D? 

One method is to try to identify the injective objects in D, but that is a bit difficult, 
even for C = Ab. Another method is to construct a large enough class of injective objects 
using skyscraper sheaves. Let x � X be a point and let G be an object of C. We may then 
view G as a sheaf on the one-point topological space {x}; the skyscraper sheaf at x with 
values in G, denoted ix(G) is the direct image of G along {x} ⊕ X. Its sections are G on 
any open set containing x and 0 otherwise; its stalks are G at all points in the closure of x 
and 0 elsewhere. 
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If we assume that C has colimits, then we can use the adjointness property between direct 
and inverse image to assert that 

HomShC (X)(F , ix(G)) = HomC (Fx, G). 

In particular, if G is injective in C, then ix(G) is injective in ShC (X). (Remember that this 
means that Hom(·, ix(G)) is an exact functor.) 

If we assume that C also has arbitrary products, it becomes easy to guess how to embed 
an arbitrary sheaf F into an injective: for each x � X, use the hypothesis that C has enough 
injectives to construct a monomorphism Fx ⊕ Gx, and then F embeds into x�X ix(Gx). 
Namely, for U ∼ X open, the map 

F(U) ⊕ ix(Gx) (U) = Gx = Fx 

x�X x�U x�U 

takes a section s to the tuple (sx) of its germs. This is a monomorphism by the sheaf axiom. 
Moreover, an arbitrary product of injective objects is injective. 

In fact, something even stronger is true, and the proof is similar; see Hartshorne, Propo
sition III.3.2. (This reproduces the previous statement by taking the sheaf of rings to be a 
constant sheaf.) 

Proposition. Let (X, OX ) be a ringed space. Then the category of sheaves of OX -modules 
has enough injectives. 

Beware that if X is a locally ringed space, it does not follow that the category of qua
sicoherent sheaves of OX -modules has enough injectives. (However, this is true for affine 
schemes because ModR has enough injectives.) 

3 More on having enough injectives 

One can also establish that the category of sheaves has enough injectives using a very general 
criterion introduced by Grothendieck in Sur quelques points... 

Theorem. Let C be an abelian category satisfying the following conditions. 

(a) C admits arbitrary (small) direct sums. 

(b) Suppose we are given a monomorphism X ⊕ Y in C, a totally ordered set I, and an 
increasing family of subobjects Yi of Y indexed by i � I. (This last means that we are 
given a monomorphism Yi ⊕ Y for each i � I, and a monomorphism Yi ⊕ Yj for each 
i, j in I with i ∩ j, such that Yi ⊕ Yj ⊕ Y agrees with Yi ⊕ Y .) Then inside Y , 

� � 
Yi ∈ X = (Yi ∈ X) . 

i i 

In other words, forming the direct limit of the Yi commutes with taking the fibred product 
with X over Y . (The direct limits on both sides exist by (a).) 
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(c) There exists an object U � C such that for any monomorphism X ⊕ Y which is not an 
epimorphism, the map Hom(U, X) ⊕ Hom(U, Y ) is also not an epimorphism. (That 
is, there is a map U ⊕ Y not factoring through X. Grothendieck calls U a generator 
of C.) Also, the class of isomorphism classes of monomorphisms into U is small (this 
is automatic if C admits a forgetful additive functor to Ab). 

Then C has enough injectives. 

Before proving this, I should point out that these conditions are sufficiently weak that 
they are satisfied by ModR. Namely, (a) and (b) are obvious, while (c) holds by taking 
U = R because then Hom(U, ·) coincides with the forgetful functor to abelian groups. (It is 
also possible to prove more directly that ModR has enough injectives, but never mind.) 

I should also check a bit more carefully that these conditions are satisfied by the category 
of sheaves of abelian groups on a locally ringed space. To check (a), note that if Fi is a family 
of sheaves on X, then we may construct the direct sum by taking the sheafification of the 
presheaf U ⊆⊕ �iFi(U). We may check (b) stalkwise. To check (c), we take U to be the 
direct sum over open subsets V ∼ X of the pushforward jV �(ZV ) of the constant sheaf on 
V with values in Z. The point is that for any sheaf G, 

� � 
Hom jV �(ZV ), G = Hom(jV �(ZV ), G) 

V V 
� 

= Hom(ZV , G|V ) 
V 
� 

= �(V, G). 
V 

You can also use a direct sum over points, as in the previous section. 

Lemma. Under the conditions of the theorem, an object M � C is injective if and only if 
for any monomorphism V ⊕ U into the generator, every morphism V ⊕ M extends to a 
morphism U ⊕ M . 

Proof. Exercise. 

Proof of the theorem. We make a first approximation to the desired construction as follows. 
Let M � C be any object. Let I(M) be the set of isomorphism classes of pairs (T, t), where 
T ⊕ U is a monomorphism and t : T ⊕ M is a morphism. Consider the map 

�(T,t)�I(M)T ⊕ M × U I(M) 

in which the factor of T coming from a pair (T, t) maps to M via T , maps to the (T, t)-th 
factor of U I(M) via the monomorphism T ⊕ U , and maps to the other factors of U I(M) via the 
zero map. Let M × U I(M) ⊕ C(M) be the cokernel of that map, and let f(M) : M ⊕ C(M) 
be the composition of this with the injection of M into the first factor of M × U I(M). One 
checks using (b) that this is a monomorphism. 
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By construction, we have a monomorphism f(M) : M ⊕ I(M) such that for any 
monomorphism T ⊕ U and any morphism T ⊕ M , we can extend T ⊕ M ⊕ I(M) 
to a morphism T ⊕ I(M). This doesn’t quite solve our problem because M ≤ I(M). The = 
trick is to repeat this construction using transfinite induction. Namely, start with M0 = 0. 
For any nonlimit ordinal i, put Mi+1 = f(Mi); for any limit ordinal, let Mi be the direct 
limit of Mj over j < i. There must then be a least ordinal k such that the cardinality of k is 
strictly greater than the cardinality of the number of isomorphism classes of monomorphisms 
into U . Then for any morphism T ⊕ Mk, the sequence of inverse images of the Mj in T for 
j < k must stabilize; that is, T maps into Mj for some Mj . Then this extends to a map of 
U into Mj+1, so Mk satisfies the condition of the previous lemma. 

4	 Sheaf cohomology for topological spaces and ringed 
spaces 

Let C be an abelian category admitting arbitrary products and colimits, and having enough 
injectives. We have just shown that for any topological space X, ShC (X) also has enough 
injectives. We may now define the sheaf cohomology functors H i : ShC (X) ⊕ C to be the 
right derived functors of the left exact functor �(X, ·) : ShC (X) ⊕ C. In particular, H0(X, F) 
is just another notation for F(X) or �(X, F). 

If (X, OX ) is a ringed space, we can also define derived functors of �(X, ·) directly on the 
category of sheaves of OX -modules. The fact that these coincide with the H i requires some 
justification, but it’s not hard. One way to see it is to note that the H i, when restricted to 
the category of OX -modules, return O(X)-modules, then argue that these are an effaceable 
cohomological functor and so coincide with the derived functors. 

Another argument is to use some acyclic objects which are not injective, remembering 
that we may use resolutions with these objects to compute derived functors. Here is a cheap 
supply of acyclic objects. A sheaf F on X is flasque (or flabby) if for any inclusion V ∼ U of 
open sets, the restriction map F(U) ⊕ F(V ) is surjective. For instance, if X is an irreducible 
topological space, then any constant sheaf is flasque. (Reminder: for C � C, the constant 
sheaf CX on any space X is the sheafification of the constant presheaf U ⊆⊕ C.) However, 
if X = R with the usual topology then the sections of CX on X are C but on R \ {0} are 
C � C, so CX is not flasque unless C = 0. 

Lemma. For any ringed space (X, OX ), any injective OX -module is flasque. In particular 
(by taking OX = ZX ), any injective sheaf of abelian groups on X is flasque. 

Proof. (Compare Hartshorne, Lemma III.2.4.) Let I be an injective OX -module. For any 
open subset U of X, let OU denote the extension by zero of OX |U to X, i.e., the sheafification 
of the presheaf assigning V to OX (V ) if V ∼ U and 0 otherwise. Note that it has stalks OX,x 

for x � U and 0 otherwise. (This differs from the direct image under the inclusion U λ⊕ X, 
which has nonzero sections on any open set meeting V .) 
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For V ∼ U an inclusion of open sets, we get a monomorphism OV ⊕ OU of sheaves of 
OX -modules. Since I is injective, this gives a surjection Hom(OU , I) ⊕ Hom(OV , I). But 
Hom(OU , I) = I(U) and Hom(OV , I) = I(V ), so I is flasque. 

Proposition. Let F be a flasque sheaf of abelian groups on a topological space X. Then 
H i(X, F) = 0 for all i > 0. 

Proof. The argument is a classic example of dimension shifting. Embed F into an injective 
sheaf I, and put G = I/F . Using the fact that F is flasque, we find (exercise) 

0 ⊕ H0(X, F) ⊕ H0(X, I) ⊕ H0(X, G) ⊕ 0 

is exact. Using this, the long exact sequence in cohomology associated to 

0 ⊕ F ⊕ I ⊕ G ⊕ 0, 

and the fact that I is acyclic, we find that H1(X, F) = 0 and 

H i(X, F) ⊗ (i > 1).= H i−1(X, G) 

Since F is flasque, and I is injective and hence flasque by the previous lemma, it follows 
that G is flasque (exercise). Hence by the induction hypothesis, we may deduce H i(X, F) ⊗= 
H i−1(X, G) = 0 for i > 1. 

5 Sheaf cohomology and topological cohomology 

If you know some topology, you might appreciate the following relationship between sheaf 
cohomology and the usual cohomology of topological spaces. (If not, pretend that the coho
mology of the constant sheaf ZX is the definition of topological cohomology of a space X, 
then skip directly to the next section.) 

Theorem. Let X be a locally contractible topological space. Then the sheaf cohomology 
of X with coefficients in the constant sheaf ZX is canonically isomorphic to the singular 
cohomology of X. 

Recall that X is contractible if there is a continuous map f : X × [0, 1] ⊕ X with 
f(x, 0) = x for all x � X, and f(x, 1) = f(y, 1) for all x, y � X; it is locally contractible 
if each point has a basis of contractible neighborhoods. For instance, all manifolds and 
CW-complexes are locally contractible. 

The singular n-chains in X, collectively denoted Cn(X), are formal finite Z-linear com
binations of continuous maps � : Tn ⊕ X, where Tn denotes the standard n-simplex. 
The boundary map � : Cn(X) ⊕ Cn−1(X) takes each simplex � to its signed boundary, 
i.e., if Tn has vertices e0, . . . , en, then for i = 0, . . . , n, you take (−1)i times the restric
tion to the subsimplex omitting ei. These form a homologically graded complex; putting 
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Cn(X) = HomZ(Cn(X), Z) gives the singular n-cochains, which form a cohomologically 
graded complex. 

Let Cn(X) be the sheafification of the presheaf U ⊆⊕ Cn(U); it is straightforward to check 
that in fact Cn(X) is flasque. Using the hypothesis that X is locally contractible (so that we 
can check exactness on stalks by running over a basis of contractible neighborhoods), one 
checks that 

0 ⊕ C0(X) ⊕ C1(X) ⊕ · · · 

is a resolution of ZX . We may thus compute H i(ZX ) by computing global sections of this 
complex. 

It remains to check that the natural map 

C · (X) ⊕ �(X, C · (X)) 

is a quasi-isomorphism of complexes. To see this, let us fix an open cover {Ui} of X, and let 
D·(X) be the set of singular cochains only defined on simplices contained in some Ui. One 
then reduces to the following assertion. 

Lemma. The restriction C ·(X) ⊕ D·(X) is a homotopy equivalence, with a quasi-inverse 
defined as follows. Given a cochain in D·(X), extend to a cochain on X by mapping each 
simplex not contained in some Ui to 0. 

This is a standard if tedious calculation; see Spanier’s Algebraic Topology. 

ˇ6 Cech cohomology 

From the previous section, we know that if X is a contractible topological space, then ZX 

is an acyclic sheaf (because the singular cohomology of X vanishes). This can be used to 
compute the cohomology of X in terms of the combinatorics of a good cover, i.e., an open 
cover {Ui} of X in which each finite intersection is contractible. (You may have read about 
this in Bott and Tu, Differential Forms in Algebraic Topology.) We will use the same idea 
later in order to compute the cohomology of quasicoherent sheaves on schemes. 

Let X be a topological space, and let U = {Ui}i�I be an open cover of X (i.e., each x � X 
appears in only finitely many Ui). For convenience, let us assume the set I is equipped with 
a total ordering (this helps straighten out some sign conventions). For each finite subset J 
of I, put UJ = ∈i�J Ui, with the convention that U� = X. 

Let F be a sheaf of abelian groups on X. We define the Čech complex of F defined by 
the open cover {Ui} as follows. For j → 0, let Čj(U, F) be the direct product of �(F , UJ ) 
over all (j +1)-element subsets J of I. The differential dj : Čj (U, F) ⊕ Čj+1(U, F) is defined 
as follows: for � = (�J ) � Čj(U, F), we have 

j+1 

dj(�)J = (−1)k ResUJ−{ik},J 
(�J−{ik}) J = {i0 ∩ · · · ∩ ij+1}. 

k=0 
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For instance, if there are only two open sets U1 and U2, then you have 

0 ⊕ �(F , U1) � �(F , U2) ⊕ �(F , U1 ∈ U2) ⊕ 0 

where the nontrivial map is the difference between the two restrictions. The signs were 
rigged up to make sure that this is indeed a complex: the point is that if you pull ij and ik 

out of a set J in on order and multiply the two resulting signs, you get the opposite sign as 
if you pulled them out in the opposite order. 

It is an easy exercise to check that this gives a complex, and continues to do so if you 
insert �(X, F) in front (with the individual restriction maps to Č0(U, F). 

It is convenient to also work with a sheafier analogue of this construction. Let Čj (U, F) 
be the direct product of jJ�F|UJ over all (j + 1)-element subsets J of I, where jJ : UJ ⊕ X 
is the inclusion. The global sections of this are just Čj(U, F). 

Lemma. The complex 

0 ⊕ F ⊕ Č0(U, F) ⊕ Č1(U, F) ⊕ · · · 

is exact. 

Proof. (Compare Hartshorne Lemma III.4.2.) It suffices to check exactness on stalks. Pick a 
point x � X; we may then replace X by some Ui containing x. In this case, we can construct 
an explicit chain homotopy k between the identity map and the zero map. Its action can be 
described as follows: given a j-cochain � = (�J ), you make a (j − 1)-cochain by identifying 
�J with a section of UJ\{i} whenever i � J , and discarding the �J whenever i /� J . To do 
this correctly, you need to add some signs; I’ll leave this to the Hartshorne reference. 

We write Ȟ ·(U, F) = h·(Č ·(U, F)). These do not form a cohomological functor if we fix 
the choice of U. As noted in Hartshorne Caution 4.0.2, this is clear for the trivial cover of X 
by itself because the global sections functor is not exact. However, they do at least give the 
right answer in the flasque case. (They also give the correct answer in degree 0 no matter 
what the cover, by the sheaf axiom!) 

Lemma. If F is flasque, then Ȟ i(U, F) = 0 for i > 0. 

Proof. In the resolution 
0 ⊕ Č0(U, F) ⊕ Č1(U, F) ⊕ · · · 

of F , each term is again flasque and hence acyclic for sheaf cohomology. If we then take 
global sections and compute cohomology of the resulting complex, on one hand we just get 
Ȟ i(U, F). On the other hand, by the acyclic resolution theorem, we are also computing 
H i(X, F), which vanishes for i > 0. 

On the other hand, suppose V is a refinement of U, i.e., a new covering {Vj}j�J equipped 
with a map � : J ⊕ I of index sets such that Vj ∼ U�(j) for all j � J . Then we get a 
restriction morphism 

Ȟ · (U, F) ⊕ Ȟ · (V, F). 
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Using refinements, the coverings of X form a direct system, so (since we are working with 
abelian groups, which admit colimits) we can form the direct limit 

Ȟ · (X, F) = lim Ȟ · (U, F).
−⊕ 

U 

Under certain circumstances, we can show that this computes sheaf cohomology. This won’t 
cover the case of schemes, but we’ll deal with that separately later. 

Theorem. Suppose that X is paracompact, i.e., X is Hausdorff and every open covering 
refines to a locally finite subcovering. Then the Ȟ ·(X, F) form a cohomological functor which 
is effaceable, hence universal, hence canonically isomorphic to H i(X, F). In particular, for 
any particular covering U, we obtain a morphism Ȟ ·(U, F) ⊕ H ·(X, F) functorial in F . 

Proof. Since X is paracompact, we need only take the direct limit over locally finite coverings. 
In that case, the functors 

F ⊆⊕ lim Č · (U, F)
−⊕ 

U 

are exact (exercise). Given that, we may apply them to a short exact sequence and then take 
the long exact sequence in cohomology to get the connecting homomorphisms. Effaceability 
holds because each F embeds into a sheaf which is injective, hence flasque, hence acyclic for 
Ȟ ·(X, ·) by an earlier lemma. 

All well and good, but what we really want to know is, when can we use the Čech 
complex associated to a particular complex U to compute the cohomology of F? Here is a 
useful answer in practice. We say the cover U is good for F if for each J , F|UJ is acyclic. 
(No hypothesis on X needed.) 

Theorem (Leray). If U is good for F , then the morphisms Ȟ ·(U, F) ⊕ H ·(X, F) are iso
morphisms. That is, the ˇ ˇ ·(U, F) computes the sheaf cohomology of F .Cech complex C

Proof. As in the proof that Čech cohomology vanishes for flasque sheaves, it would suffice 
to show that the resolution 

0 ⊕ Č0(U, F) ⊕ Č1(U, F) ⊕ · · · 

is acyclic. Unfortunately, we can’t directly conclude this from the fact that each F|UJ is 
acyclic, because the direct image jJ� functor need not be exact. 

So instead, we argue by dimension-shifting. The claim is evident for i = 0 by the sheaf 
axiom. Given the claim for all indices less than i, embed F into an injective sheaf I, and 
let G be the quotient: 

0 ⊕ F ⊕ I ⊕ G ⊕ 0. 

On each UJ , F and I are acyclic, so G is as well by the long exact sequence in cohomology. 
Moreover, we have short exact sequences 

0 ⊕ �(UJ , F) ⊕ �(UJ , I) ⊕ �(UJ , G) ⊕ H1(UJ , F) = 0. 
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This means that not only does this short exact sequence of sheaves give rise to a long exact 
sequence for the H i(X, ·), it also gives rise to a long exact sequence for the Ȟ i(U, ·) (because 
we get a short exact sequence of Čech complexes). We thus have a commuting diagram with 
exact rows: 

Ȟ i−1(U, I) �� Ȟ i−1(U, G) �� Ȟ i(U, F) �� Ȟ i(U, I) 

H i−1(X, I) H i−1(X, G) H i(X, F) H i(X, I) 

in which the corners are zero (because injective implies flasque, which implies both the 
ordinary and Čech cohomologies vanish). So we transfer our question about F at index i to 
a question about G at index i − 1, which we know by the induction hypothesis. 

This has practical applications outside of algebraic geometry: you can now use good 
covers to compute the singular cohomology of ordinary topological spaces! The analogue of 
this in algebraic geometry will appear next, when we start computing the cohomology of 
quasicoherent sheaves; the analogue of contractible open subsets in the topological case will 
turn out to be the affine schemes, on which quasicoherent sheaves will be acyclic. 
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