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18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) 
More on abelian sheaves 

We now specialize the discussion of sheaves to the situation where the target category 
consists of abelian groups. At the end, I’ll explain how to generalize to the case of a target 
which is an abelian category. 

1 Abelian groups 

Assume until I say otherwise that C = Ab. (At the end, we’ll generalize to the case where 
C can be any abelian category.) Let me first set some notation and terminology about 
morphisms of abelian groups themselves. 

For f : A → B a morphism of abelian groups, 

ker(f) = {x ∈ A : f(x) = 0} 

im(f) = {f(x) : x ∈ A} 

coker(f) = A/ im(f) = {y + im(f) : y ∈ B}. 

A (finite or infinite) sequence 

· · · → Ai−1 → Ai → Ai+1 → · · · 

in Ab is exact if for each i, 

im(Ai−1 → Ai) = ker(Ai+1 → Ai). 

If we only have the weaker assertion that 

im(Ai−1 → Ai) ⊆ ker(Ai+1 → Ai) 

(i.e., the composition Ai−1 → Ai → Ai+1 is zero) for each i, we say that the sequence is a 
complex. 

Here are some useful facts about exact sequences; their proofs are fun exercises in what 
is sometimes called diagram chasing. Remember that in Ab, monomorphism equals injective 
and epimorphism equals surjective (so mono plus epi equals iso, which is not true in an 
arbitrary category). 

Lemma (Five lemma). Let 

A0 
��

f0 

��

A1 
��

f1 

��

A2 
��

f2 

��

A3 
��

f3 

��

A4 

f4 

��

B0 
�� B1 

�� B2 
�� B3 

�� B4 

be a commuting diagram in C with exact rows. 
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(a) If	 f1 and f3 are monomorphisms and f0 is an epimorphism, then f2 is a monomor
phism. 

(b) If f1 and f3 are epimorphisms and f4 is a monomorphism, then f2 is an epimorphism. 

Proof. Exercise. 

Lemma (Snake lemma). Let 

0 �� A1 
�� A2 

�� A3 
�� 0 

f1 f2 f3 

0 �� B1 
�� B2 

�� B3 
�� 0 

be a short exact sequence. Then there exists a canonical homomorphism δ : ker(f3) → 
coker(f1) (the connecting homomorphism) such that 

δ
0 → ker(f1) → ker(f2) → ker(f3) → coker(f1) → coker(f2) → coker(f3) → 0 

is exact, where all the maps other than δ are the obvious ones induced by the diagram. 

Proof. Here is what δ is supposed to be: given a3 ∈ ker(f3), lift it to a2 ∈ A2, then apply f2 

to get b2 ∈ B2. Since the diagram commutes, b2 must map to zero in B3, so it lifts to b1 in 
B1. Declare δ(a3) = b1. 

It remains to show that δ is well-defined and is a homomorphism, and that the claimed 
sequence is exact. These are left as exercises. 

Corollary (Short five lemma). Let 

0 

0 

be a commuting diagram in C with exact rows. Then f2 is a monomorphism/epimorphism if 
and only if f1 and f3 both are. 

2 Exact functors 

For C1 = C2 = Ab, a covariant functor F : C1 → C2 is additive if it commutes with addition 
of morphisms. Any additive functor sends complexes to complexes (because the property of 
the composition of two maps being zero is preserved), but not necessarily exact sequences 
to exact sequences. Hence the following definitions. 

We say F is left exact if for any exact sequence 

0 → A1 → A2 → A3 

2 

�� A1 
��

f1 

��

A2 
��

f2 

��

A3 
��

f3 

��

0 

�� B1 
�� B2 

�� B3 
�� 0 



the sequence 
0 → F (A1) → F (A2) → F (A3) 

is exact. We say F is right exact if for any exact sequence 

A1 → A2 → A3 → 0 

the sequence 
F (A1) → F (A2) → F (A3) → 0 

is exact. We say F is exact if it is both left exact and right exact; equivalently, for any exact 
sequence 

0 → A1 → A2 → A3 → 0 

the sequence 
0 → F (A1) → F (A2) → F (A3) → 0 

It in turn implies that any exact sequence of any length goes into another exact sequence 
under F . (I’ll try avoid using these notions for contravariant functors, since there is a 
left/right ambiguity.) 

Examples: 

• For any given X ∈ C, the covariant functor Hom(X, ·) is left exact. 

• For any given X ∈ C, the covariant functor X ⊗ · is right exact. 

Many left/right exact functors arise from the following proposition. 

Proposition. Suppose the covariant functors f ∗ : C1 → C2 and f∗ : C2 → C1 form an adjoint 
pair. Then f ∗ is right exact and f∗ is left exact. 

Proof. Exercise. 

3 Abelian sheaves 

Let F be a sheaf on a topological space X with values in C = Ab. A subsheaf of F is what 
you think: take a subset of the sections on each open so that you still have a sheaf. The 
quotient of F by a subsheaf G is a bit trickier: take the presheaf U 7→ F(U)/G(U), then 
sheafify. Note that the stalk at x is indeed Fx/Gx. 

Given a morphism φ : F → G of sheaves, the presheaf U 7→ ker(φ(U)) is a sheaf; we call 
it the kernel of φ. The presheaves U 7→ im(φ(U)) and U 7→ coker(φ(U)) are not in general 
sheaves; their sheafifications are called the image and cokernel of φ. 

Proposition. For x ∈ X, we have ker(φ)x = ker(φx), im(φ)x = im(φx), and coker(φ)x = 
coker(φx). Consequently, 

im(φ) ∼= F/ ker(φ), =coker(φ) ∼ G/ im(φ). 
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Proof. Exercise. 

Using these, we extend the notion of exactness to a sequence of sheaves; it’s equivalent 
to define it using sheaves or stalks, but not using sections. 

Let Sh
C
(X) be the category of sheaves on X with values in C. We define the global 

sections functor Γ(·, X) : ShC(X) → C by the formula 

Γ(F , X) = F(X). 

(No set-theoretic difficulties here: X is a small category, so sheaves on X with values in C 
do form a class.) 

Proposition. The global sections functor is left exact. 

Proof. Exercise. 

The failure of the global sections functor to be right exact will give rise to the notion of 
sheaf cohomology later. 

4 Abelian categories 

Everything I defined above can be generalized to the case where C is what is called an abelian 
category, i.e., a category which captures the useful properties of abelian groups. 

First, let me give an ad hoc definition which will suffice for our purposes. A nice abelian 
category is an additive category in which all limits and colimits exist, together with a forgetful 
functor to Ab which preserves limits and colimits. 

Next, let’s figure out what the correct abstract definition shoul be. We first write down 
the definition of an preadditive category (which I called an additive category by mistake on 
Problem Set 1). That is a category C equipped with the structure of an abelian group on 
each set Hom(X, Y ), over which composition is distributive. 

We next define an additive category. The key notion is that direct sum and direct product 
coincide for a finite collection of abelian groups. We should thus require the existence of 
biproducts: that is, for any X1, . . . , Xn ∈ Obj(C), there must exist an object X equipped 
with maps πi : X → Xi and ιi : Xi → X, such that X is both a product (using the πi) and 
a coproduct (using the ιi), and the sum ι1 ◦π1 + · · · + ιn ◦πn is the identity on X. (Exercise: 
this exists as soon as you have finite products.) 

Since the empty biproduct exists, an additive category has a terminal (initial and final) 
object, which we call the zero object and label 0. In an additive category, we can define a 
kernel of the morphism f : X → Y to be a limit of the diagram 

X 0 

Y 
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i.e., an object W plus a morphism g : W → X such that f ◦ g = 0, and any other morphism 
h : V → X for which f ◦ h = 0 factors uniquely through g. Similarly, a cokernel of f is a 
colimit of 

X ���������� ��

Y 0 

To get a preabelian category, we insist that every morphism admit a kernel and cokernel 
(which as usual are only unique up to unique isomorphism). To get an abelian category, we 
insist that every monomorphism be the kernel of its cokernel, and every epimorphism be the 
cokernel of its kernel. 

The Freyd-Mitchell embedding theorem asserts that at least for every small abelian cat
egory C, we can construct an exact and fully faithful functor F : C → ModR for a not 
necessarily commutative ring R (where ModR now means left modules). This lets you prove 
theorems about abelian categories by reducing to situations where objects really do have 
elements. 

The main difference between my nice abelian categories and true abelian categories is 
that I want all limits and colimits to exist. This is a bit strong for some purposes, but since 
I need limits anyway to work with sheaves, it’s not so strange. 

Anyway, the point here is that if you start with a (nice) abelian category C, for any 
topological space X, the category ShC(X) is again a (nice) abelian category. This follows by 
assembling various homework exercises. 
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