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18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) 
Introduction 

In this lecture, I’ll give a bit of an overview of what we will be doing this semester, and 
in particular how it will differ from 18.725. We will start in earnest (with the rudiments of 
category theory) in the next lecture. 

1 Where we were, and where we need to go 

In 18.725, we studied the notion of an abstract algebraic variety over an algebraically closed 
field. This combines a lot of the commutative algebra developed in the early 20th century 
(largely to explain the geometric reasoning of the masters of the Italian school) with Weil’s 
fundamental idea to glue affine algebraic varieties in the same way that one glues local charts 
together to build manifolds. So what’s left? 

•	 We would like to deal with phenomena of nonreducedness, for instance as it emerges 
under degenerations. One of the key ideas of the Italian school for understanding 
things like the geometry of the moduli space of curves was to notice that if you have 
a family of algebro-geometric objects defined in terms of a parameter t, then the 
behavior of a particular member of the family is sometimes much simpler than that of 
a general member. For instance, for a general t, the elliptic curve y2 = x3 + tx+ t does 
not have a rational parametrization, but it does in the special case t = 0. One can 
often understand something about the general member of the family by first analyzing 
a special member, then figuring out how the information you are looking for gets 
transmitted back to the general member via the degeneration. 

However, degenerations of algebraic varieties are not always best viewed as algebraic 
varieties. For example, if t � 0, then the homogeneous polynomial y2 − tx2 in x, y, z = 
(over, say, the complex numbers) defines a pair of lines. The degeneration at t = 0, 
however, is the single line y = 0, because the equations y2 = 0 and y = 0 define the 
same variety. In order for the degeneration to preserve the degree of the curve, we need 
to remember that it is y2 rather than y which defines this line. That is, the function 
y on the variety should be nilpotent, a possibility that is not afforded by the category 
of algebraic varieties. 

•	 We would like to work over fields which are not algebraically closed. The restriction to 
algebraically closed fields was originally needed to make things like Bézout’s theorem 
work. However, at the end of the day, we are sometimes interested in solving polyno
mials over non-algebraically closed fields. For instance, the elliptic curves y2 = x3 + tx 
defined by rational numbers t are all isomorphic as algebraic varieties over the complex 
numbers. However, they have rather different arithmetic behaviors; for instance, the 
curve for t = 1 has only finitely many rational points, whereas the curve for t = 73 has 
infinitely many. 
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Weil had an answer for this point: he suggested embedding one’s given base field in 
a large algebraically closed field, called a universal domain. However, Weil’s answer 
looks like a mistake in hindsight, because it is not sufficiently functorial ; see below. 

•	 We would also like to work over (commutative, unital) rings, not just fields. For 
instance, already in Weil’s work the question of reduction mod p arises, but cannot be 
addressed while working over fields. 

Even in the context of varieties, one often wants to work over a base which is not a 
field. For instance, the theory of elliptic surfaces is largely thought of by viewing these 
surfaces as (relative) elliptic curves over a base curve. 

There’s more, but enough for now. 

2 Paradigm shift 1: sheaves 

At the time, one might have expected that the future development of algebraic geometry 
would proceed as a natural descent from Weil’s 1946 Foundations, with more bells and 
whistles attached to extend generality. However, just as the theory of epicycles to explain the 
motion of planets was thrown into disrepute by two paradigm shifts (Galileo’s heliocentricity 
and Kepler’s elliptic orbits), two paradigm shifts rendered Weil’s foundations a dead end in 
the development of algebraic geometry. (Most material written in that language has since 
appeared in modern terminology; what remains untranslated is as intelligible to the modern 
reader as Chaucer’s Middle English.) 

The first of these shifts can be attributed to Serre, who introduced the notion of sheaves 
into algebraic geometry. These are the sort of objects defined by descriptions like “take all 
continuous functions on all open subsets of a topological space”, or “take all differentiable 
functions on all open subsets of a smooth manifold”. The latter example is particularly 
helpful to keep in mind: it is possible to have two different smooth manifolds which are 
isomorphic as topological spaces (e.g., to R4, or to a seven-dimensional sphere), but not as 
smooth manifolds. That is, the underlying topological space does not carry enough infor
mation to detect nonisomorphism of smooth manifolds. However, the sheaf of differentiable 
functions does carry enough information. 

Sheaves were originally introduced by Cartan in order to simplify and extend the theory 
of complex analytic geometry. It is Serre who recognized their place in modern algebraic 
geometry, by observing (among other things) that they give you a natural way to add nilpo
tents. In my example of the lines y = 0 versus y2 = 0 in the (x, y)-plane, it will turn out 
that (in the category of schemes) the underlying sets of these two objects will be the same, 
but the sheaves of regular functions will differ. 

However, it will take us some time before we can relate sheaves to algebraic geometry. 
We will first have to take some time to discuss topological spaces equipped with rings of 
“interesting” functions, giving rise to the notion of a locally ringed space. This notion includes 
many familiar things: topological spaces, topological manifolds, smooth manifolds, and even 
abstract algebraic varieties. 
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But what we really want to include into this category is the prime spectrum of an arbitrary 
(commutative) ring. Recall that over an algebraically closed field, by the Nullstellensatz 
there is a bijection between the points of an affine algebraic variety and the maximal ideals 
of its ring of regular functions. For a general ring, Zariski suggested to instead look at the 
set of prime ideals, i.e., the prime spectrum of the ring; that way, any map of rings would 
correspond to a map (contraction) on prime ideals in the opposite direction. 

The “fundamental theorem of schemes” is that this set carries the natural structure of 
a sheaf of rings. In other words, the prime spectrum of a ring can be viewed as a locally 
ringed space. With that (nontrivial) fact in hand, we will be ready to glue prime spectra 
together to manufacture arbitrary schemes. 

3 Paradigm shift 2: functors 

The second paradigm shift that stood between Weil and modern algebraic geometry is mostly 
due to Grothendieck, though it is of a piece with the formalist view of mathematics pro
pounded by the Bourbaki school of French mathematicians in the middle of the 20th century. 
It is to conceive of algebraic geometry in the language of categories and functors. Roughly 
speaking, a category is the collection of all mathematical objects of a given type, equipped 
with the maps between those objects that preserve the distinguishing structures. The key ex
ample to keep in mind is the category of all rings, together with all homomorphisms between 
rings. 

At first, it may seem rather a bad idea to deal with categories; for one thing, they cannot 
be viewed as sets due to some annoying paradoxes in set theory (such as Russell’s paradox). 
But once you get past such considerations, dealing with categories is not so hard, and in fact 
they appear everywhere around you. 

Here is where categories appear naturally in algebraic geometry. Say P1, . . . , Pm are 
polynomials in the variables x1, . . . , xn over a ring R. Then for any ring S equipped with a 
homomorphism R → S, it makes sense to consider the set 

{(x1, . . . , xn
) ∈ Sn : P1(x1, . . . , xn

) = · · · = P 
m

(x1, . . . , xn
) = 0} 

of S-valued solutions to the system of equations P1 = · · · = P 
m = 0. One should thus avoid 

linking these polynomials to a single set of “points”, but instead view them as a scheme for 
converting rings into sets of solutions. This gives a natural example of a functor between two 
categories, i.e., a rule for converting objects of one category into objects of the other, and 
for converting morphisms between two objects of the first category into morphisms between 
the image objects of the second category. (In our example, we are converting R-algebras 
into sets.) 

One benefit of this point of view is that it naturally distinguishes, for instance, the zero 
loci of y and y2: they give the same sets when we plug in an algebraically closed field k, but 
not when we plug in a ring such as k[ǫ]/(ǫ2). 

That benefit by itself is not so significant, as it still doesn’t really prove that category 
theory is good for anything other than formulating simple statements in complicated lan
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guage. What makes category theory so useful, and how we will exploit it in our work, is that 
it lets you formalize certain types of “reasoning by analogy” that mathematicians would like 
to engage in all the time, but which is sometimes difficult. One key example in the context 
of schemes is the notion of a product. Given two mathematical objects X and Y , how should 
one define their product X × Y ? When X and Y are given as sets carrying some extra 
structure (e.g., groups, rings, etc.), the correct answer is to take the Cartesian product of 
the underlying sets and then somehow cook up a good structure on that. 

From the point of view of category theory, though, the right way to answer this question is 
to specify a universal property that should be satisfied by the product. Namely, the product 
X × Y should have the following properties. 

(a) It should come with projection maps π1 : X × Y → X and π2 : X × Y → Y . 

(b) Given any object Z, the function taking a map f : Z → X × Y to the pair of compo
sitions π1 ◦ f : Z → X and π2 ◦ g : Z → Y should be a bijection. 

This does not by itself actually construct products; indeed, some categories may not always 
admit product objects according to this definition. However, it does give a characterization 
of how a “correct” definition of a product object should behave. In fact, it’s okay to come up 
with two different definitions as long as they both satisfy the universal property; the effect 
is that there will be canonical identifications between the two types of projects. 

We will use this particular example to construct products in the category of schemes. 
There, we will discover that the product of two schemes does not have underlying set equal 
to the Cartesian products of the underlying sets! 
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