
18.725 Algebraic Geometry I Lecture

Lecture 25: Proof of Serre Duality

We’ll deduce the Serre duality of curves from a linear algebra observation: let V1, V2 ⊂ V , and define
V1
⊥ = {λ ∈ V ∗ | λ(v′) = 0 ∀v′ ∈ V1}, then V1

⊥, V2
⊥ ⊂ V ∗, then V1 ∩ V2 = (V ∗/V1

⊥ + V2
⊥)∗ and V1

⊥ ∩ V2⊥ =
(V1 + V2)⊥ = (V/(V1 + V2))∗. In particular, let C = (V1 ⊕ V2 → V ) and C ′ = (V1

⊥

0
⊕ V2⊥ → V ∗), then

H (C ′) = H1(C)∗ and H1(C ′) = H0(C)∗.

Definition 1. A Tate vector space is vector space with a topology, such that there exists a basis of neighbor-
hoods of 0 consisting of vector subspaces which are commensurable.1

Example 1. V = k((t)) is a Tate vector space, where we consider tik[[t]] as the neighborhoods of 0.

◦
Residue Let x ∈ X a smooth point on a curve. Ôx,X = limO /mn ∼= k[[t]], and Ô = F (Ô ) ∼=−→ x,X x x,X res x,X

n
◦

k((t)). Then there is a residue map Res : Ω ⊗ Ô = atix,X → k by mapping ω dt to aÔx,X
−1. This is

independent of the choice of t. In char k = 0, the residue map is characterized by 1) Res(df) = 0 and 2)
Res(df/f) = 1 for f a uniformizer. Note that suppose f = ϕt for ϕ invertible, then

∑
df/f = dt/t+dϕ/ϕ, and

the second term creates residue 0. In case of char k = p > 0, of course residue is no longer characterized by
those two, so we need to use a stronger version of 2). A possible choice is that the residue is invariant under
automorphisms of the formal Taylor series k[[t]]. For any scalar s in k we have an automorphism tndt
n+1 n

7→
s t dt, and it’s clear that the only invariant linear functional is proportional to taking the coefficient at
t−1dt.

For an algebraic group G over any field one has its Lie algebra g which acts on every G-module (as
derivations). For a connected group G over a field of characteristic 0 and a G-module M , the (co)invariants
of G and of g on M are the same; but this is false in characteristic p. The simplest example comes from
Fp[x, y]: the polynomial xp is not invariant for the group GL(2) of linear transformations of the variables,
but it’s invariant under its Lie algebra, because derivatives of a p-th power vanish.

The group of automorphisms of k[[t]] belongs to a larger class of groups; in particular, it is an infinite
dimensional algebraic group (a.k.a. a group scheme of infinite type). Much of the theory goes through for this
generalization. The Lie algebra is the Lie algebra of vector fields of the form f(t)d/dt, where f(t) ∈ t−1k[[t]].
(One can consider the group Aut(k((t))) whose Lie algebra is the more natural thing {f(t)d/dt | f ∈ k((t))},
but this group is even “more infinite dimensional” and there are additional technical subtleties.) Vector
fields act on differential forms by Lie derivatives: v(ω) = Lv(ω) = d(iv(ω)), where Lv is the Lie derivative,
iv(ω) ∈ k((t)) is the “insertion” (pairing) of the vector field and the 1-form. The condition Res(df) = 0 is
equivalent to invariance of residue under the action of the Lie algebra, which is the same as invariance under
the group if we are over a field of characteristic zero, but not in general.

Now we can define a pairing Ôx,X × Ô
◦

x,X ⊗ Ω → k that sends (f, ω) to Res(fω). Under this we have

̂ ◦ ◦
(Ox,X ⊗Ω) ∼= (Ôx,X )∨ as dual topological

(
spaces,

)
where the dual basis for ti on the left is t−i−1dt on the

right. (Check that left equals k[t−1]⊕ k[[t]], and k[t−1]∨ = k[[t]]dt and k[[t]]∨ = t−1k[t−1]dt.) So if we take
∞

the non-localized version (Ôx,X ⊗ Ω)⊥ ∼= Ôx,X , then again we can do calculation: a
i=

∑
it
idt pairing with

−N∑∞
bit

i yield 0 for all bi iff ai = 0 for i < 0.
i=0

Lemma∑ 1. Suppose X is a complete smooth curve, ω ∈ Γ(U,Ω), U is a nontrivial open subset, then

Resxi
ω = 0.

x∈X\U

Sketch of Proof. (See [Tat68] for another proof.) If X = P1, then it is an explicit computation, as ω is a
dz

linear combination of . For general X, reduce to X = P1 as follows: Find a finite separable map
(z − a)n

ϕ
X −→ P1, ω = f ◦ ϕ∗(θ), f ∈ R(X), R(X)/R(P1) is a finite extension, and let f = Tr(f) ∈ R(P1) under

1We say V1 and V2 are commensurable if V1/(V1 ∩ V2) has finite dimension.
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this extension. Then one can check that Resxfθ = Resxi
(ω) for any x

xi 7→x

∈ P1. As a corollary, we have∑
Res(ω) = Res(

∑

y

∑
fθ) = 0.

x∈X ∈P1

Proof for Serre duality for curves. Let E be locally free, Y = X \ {x1, . . . , xn} be affine, and j : Y ↪
n r ◦ r

→ X.

Êx = lim Ex/mx = Ex ⊗Ox,X
Ôx,X

∼= k[[t]] and Êx = Êx ⊗ ̂
Ô x,X

x,X
O =∼ k((t)) where r is the rank of E . We

claim
−
that
→

H∗(X, E) is computed by the complex

Γ(E|Y )⊕
⊕
i

Êxi →
⊕
i

Ê
◦

xi

One can check its cohomology is the same as the cohomology of the complex

◦
Γ(E|Y )→

⊕
i

Êxi /Êxi

̂ ◦
x,X

But the right hand side is just the global section of j j∗∗ E/E . Note that rhs at x is
OEx ⊗Ox,X

(
Ôx,X

)
,

◦
∗ ÔE E x,X

and this is the stalk of j j / at x. (Some more explanation: = Fres( U∗ ̂
Ox,X)/Ox,X = k[U − x]/k[ ]

x,X

where U is an affine neighborhood of x. This is a module where
O

mx acts by a local map where neither

localizing by elemen

Now set V =

( ∨̂ Ω)◦ ; set

⊕ts in mx nor replacing Ox,X by Ôx,X affects it.)

Ê
◦

xi
⊃ V1 = Γ(E|Y ), V2 = Exi

. Then we have the topological dual V ∨ =⊕ i

E ⊗ xi
V1
′ = Γ(Ω ⊗ E∨|Y ), V2

′ = Ω̂

⊕
⊗ Ex∨

̂
i
. By the linear algebra discussed above, it re-

i

mains to check V1
⊥ = V1

′ and V2
⊥ = V2

′. V2
⊥ =

⊕
V2
′ reduces to k[[t]]⊥ ∼= k[[t]]dt. We also have V1

′ ⊂ V1
⊥,

which follows from Resxiω = 0 (the lemma above), and it remains to see V1
′ = V1

⊥. Notice that

V1
′ = V1

⊥ ⇔ dim(Hi(

∑
E∨ ⊗ Ω)) = dim(H1−i(E)) by what we know.

We want to check that V1
⊥/V r

1
′ is finite dimensional. V1 ⊂ V = k[[t]]] , and as a subspace it is discrete

and cocompact, i.e. has a compact complement. Discrete follows from H0 being finite dimensional, and
cocompact follows from H1 being finite dimensional. Now, V1 is discrete implies V1

∗ is compact (complete)
which implies V1

⊥ is cocompact, and V1 cocompact implies V1
⊥ = (V/V1)∗ is discrete since V/V1 is compact.

Now in general, for discrete cocompact subspaces U ⊂ W of V , one can check that the quotient W/U is
discrete compact and finite dimensional.

Now we have that V1
⊥ contains V1

′ with finite codimension (thus the quotient k[Y ]-module V1
⊥/V1

′ is
supported at finitely many points y1, . . . , ym), we can consider it as a subspace of K(Ω ⊗ E∨|Y ), the space
of rational sections of Ω⊗ E∨|Y .

From here there are two ways to proceed: on one hand, we can replace Y by Y ′ = Y \{y1, . . . , ym}.
Then Γ(E|Y ′)⊥ = Γ(E|Y )⊥(f ,...,f ) where localization by fi correspond to removing yi (observe that if

1 m

s ∈ Γ(E|Y ′)⊥ ⊂ K(Ω⊗E∨|Y ) and s is regular at each yi, then s ∈ Γ(E|Y )), and we still get rational sections
that may be singular at yi; on the other hand, Γ(Ω⊗ E∨|Y ′) consists of rational sections of Ω ⊗ E∨ on Y
that may be singular on yi, so we have V1

⊥ = V1
′ for Y ′. On the other hand, we can directly check V1

⊥ ⊃ V1′:
suppose s is a rational section in V1

⊥, and has singularities y1, . . . , ym. Then since Y is affine, one can find a
section s′ of E such that (s, s′), which is a section of Ω, is regular at yi for i > 1, but Resy1(s, s′) = 0. Then
we see that s cannot be orthogonal to s′.

Now we state some standard corollaries.

Corollary 1. Define the arithmetic genus ga = dim(H1(O)), and the geometric genus gm = dim(G(KX)).
Then apply Serre duality to E = O to get ga = gm.

Corollary 2. Riemann-Roch implies dim(Γ(E)) − dim(Γ(K ⊗ E∗)) = deg(E) + rank(E)(1 − g). This is
Riemann’s form of the theorem.

2

6

25



18.725 Algebraic Geometry I Lecture

Corollary 3. deg(K) = 2g − 2.

Proof. χ(O) = −χ(K) by Serre duality. deg(K) = χ(K) + g − 1 = 2g − 2.

The statement of the Serre duality generalizes: let X be a smooth complete (irreducible) variety of
dimension n, and let E be a locally free sheaf, then there is a duality Hn−i(E∨⊗K) ∼= Hi(E)∗. It can also be
generalizred to not locally free sheaves and non-smooth varieties (best described using derived categories).

For instance, let X be a smooth affine curve, and F a torsion sheaf. Then there exists a canonical
isomorphism Γ(F )∗ ∼= Ext1(F ,KX). Suppose X is smooth of dimension n, and F torsion is supported at a
0-dimensional set, then Γ(F )∗ ∼= Extm(F ,KX). Generalizations of Riemann-Roch include the Hirzebruch-
Riemann-Roch theorem and the Grothendieck-Riemann-Roch theorem.

Let X complete, F coherent sheaf, χ(F ) is a topological invariant of F , i.e. one can give a formula for
χ(F ) in terms of topological invariants of F and that of the tangent bundle of X. For instance, suppose
X is locally free and is over C, then it corresponds to a vector bundle, and has Chern classes. Then χ(F )
is expressed via the Chern classes. In particular, it’s constant in families. Even more generally, recall that
the global section functor is the same as direct image of the map to a point, and cohomology are the higher
direct images. So if we replace X → pt to an arbitrary map X → Y , we get Grothendieck’s version of
Riemann-Roch.

A major theme of AG is the question of how to reconstruct topological invariants of X(C)cl (classical)
from AG data. This of course can also generalize to other fields. There are two approaches: the de Rham
approach (using differentials, e.g. if X is an affine smooth variety, then X’s regular cohomology can be

i
d d

computed using its algebraic de Rham complex k[X] −→ Γ(Ω1X) −→ Γ(Ω2X) → . . . where ΩiX = ΩX),

and the etale approach (related to counting of X(Fq) and the Weil conjectures).

∧
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