Lecture 25: Proof of Serre Duality

We'll deduce the Serre duality of curves from a linear algebra observation: let $V_{1}, V_{2} \subset V$, and define $V_{1}^{\perp}=\left\{\lambda \in V^{*} \mid \lambda\left(v^{\prime}\right)=0 \forall v^{\prime} \in V_{1}\right\}$, then $V_{1}^{\perp}, V_{2}^{\perp} \subset V^{*}$, then $V_{1} \cap V_{2}=\left(V^{*} / V_{1}^{\perp}+V_{2}^{\perp}\right)^{*}$ and $V_{1}^{\perp} \cap V_{2}^{\perp}=$ $\left(V_{1}+V_{2}\right)^{\perp}=\left(V /\left(V_{1}+V_{2}\right)\right)^{*}$. In particular, let $C=\left(V_{1} \oplus V_{2} \rightarrow V\right)$ and $C^{\prime}=\left(V_{1}^{\perp} \oplus V_{2}^{\perp} \rightarrow V^{*}\right)$, then $H^{0}\left(C^{\prime}\right)=H^{1}(C)^{*}$ and $H^{1}\left(C^{\prime}\right)=H^{0}(C)^{*}$.

Definition 1. A Tate vector space is vector space with a topology, such that there exists a basis of neighborhoods of 0 consisting of vector subspaces which are commensurable. $\frac{1}{-}$

Example 1. $V=k((t))$ is a Tate vector space, where we consider $t^{i} k[[t]]$ as the neighborhoods of 0 .

Residue Let $x \in X$ a smooth point on a curve. $\widehat{\mathcal{O}_{x, X}}=\underset{n}{\lim } \mathcal{O}_{x, X} / \mathfrak{m}_{x}^{n} \cong k[[t]]$, and $\widehat{\mathcal{O}_{x, X}}=F_{r e s}\left(\widehat{\mathcal{O}_{x, X}}\right) \cong$ $k((t))$. Then there is a residue map Res $: \widehat{\Omega_{\mathcal{O}_{x, X}}} \otimes{\widehat{\mathcal{O}_{x, X}}}^{0} \rightarrow k$ by mapping $\omega=\sum a t^{i} d t$ to a_{-1}. This is independent of the choice of t. In char $k=0$, the residue map is characterized by 1) $\operatorname{Res}(d f)=0$ and 2) $\operatorname{Res}(d f / f)=1$ for f a uniformizer. Note that suppose $f=\varphi t$ for φ invertible, then $d f / f=d t / t+d \varphi / \varphi$, and the second term creates residue 0 . In case of char $k=p>0$, of course residue is no longer characterized by those two, so we need to use a stronger version of 2). A possible choice is that the residue is invariant under automorphisms of the formal Taylor series $k[[t]]$. For any scalar s in k we have an automorphism $t^{n} d t \mapsto$ $s^{n+1} t^{n} d t$, and it's clear that the only invariant linear functional is proportional to taking the coefficient at $t^{-1} d t$.

For an algebraic group G over any field one has its Lie algebra g which acts on every G-module (as derivations). For a connected group G over a field of characteristic 0 and a G-module M, the (co)invariants of G and of g on M are the same; but this is false in characteristic p. The simplest example comes from $\mathbb{F}_{p}[x, y]$: the polynomial x^{p} is not invariant for the group GL(2) of linear transformations of the variables, but it's invariant under its Lie algebra, because derivatives of a p-th power vanish.

The group of automorphisms of $k[[t]]$ belongs to a larger class of groups; in particular, it is an infinite dimensional algebraic group (a.k.a. a group scheme of infinite type). Much of the theory goes through for this generalization. The Lie algebra is the Lie algebra of vector fields of the form $f(t) d / d t$, where $f(t) \in t^{-1} k[[t]]$. (One can consider the group $\operatorname{Aut}(k((t)))$ whose Lie algebra is the more natural thing $\{f(t) d / d t \mid f \in k((t))\}$, but this group is even "more infinite dimensional" and there are additional technical subtleties.) Vector fields act on differential forms by Lie derivatives: $v(\omega)=L_{v}(\omega)=d\left(i_{v}(\omega)\right)$, where L_{v} is the Lie derivative, $i_{v}(\omega) \in k((t))$ is the "insertion" (pairing) of the vector field and the 1-form. The condition Res $(d f)=0$ is equivalent to invariance of residue under the action of the Lie algebra, which is the same as invariance under the group if we are over a field of characteristic zero, but not in general.

Now we can define a pairing $\widehat{\mathcal{O}_{x, X}} \times\left({\widehat{\mathcal{O}_{x, X}}}^{\circ} \otimes \Omega\right) \rightarrow k$ that sends (f, ω) to $\operatorname{Res}(f \omega)$. Under this we have $\left({\widehat{\mathcal{O}_{x, X}}}^{\circ} \otimes \Omega\right) \cong\left({\widehat{\mathcal{O}_{x, X}}}^{\circ}\right)^{\vee}$ as dual topological spaces, where the dual basis for t^{i} on the left is $t^{-i-1} d t$ on the right. (Check that left equals $k\left[t^{-1}\right] \oplus k[[t]]$, and $k\left[t^{-1}\right]^{\vee}=k[[t]] d t$ and $k[[t]]^{\vee}=t^{-1} k\left[t^{-1}\right] d t$.) So if we take the non-localized version $\left(\widehat{\mathcal{O}_{x, X}} \otimes \Omega\right)^{\perp} \cong \widehat{\mathcal{O}_{x, X}}$, then again we can do calculation: $\sum_{i=-N}^{\infty} a_{i} t^{i} d t$ pairing with $\sum_{i=0}^{\infty} b_{i} t^{i}$ yield 0 for all b_{i} iff $a_{i}=0$ for $i<0$.

Lemma 1. Suppose X is a complete smooth curve, $\omega \in \Gamma(U, \Omega), U$ is a nontrivial open subset, then $\sum_{x \in X \backslash U} \operatorname{Res}_{x_{i}} \omega=0$.

Sketch of Proof. (See [Tat68] for another proof.) If $X=\mathbb{P}^{1}$, then it is an explicit computation, as ω is a linear combination of $\frac{d z}{(z-a)^{n}}$. For general X, reduce to $X=\mathbb{P}^{1}$ as follows: Find a finite separable map $X \xrightarrow{\varphi} \mathbb{P}^{1}, \omega=f \circ \varphi^{*}(\theta), f \in R(X), R(X) / R\left(\mathbb{P}^{1}\right)$ is a finite extension, and let $\bar{f}=\operatorname{Tr}(f) \in R\left(\mathbb{P}^{1}\right)$ under

[^0]this extension. Then one can check that $\operatorname{Res}_{x} \bar{f} \theta=\sum_{x_{i} \mapsto x} \operatorname{Res}_{x_{i}}(\omega)$ for any $x \in \mathbb{P}^{1}$. As a corollary, we have $\sum_{x \in X} \operatorname{Res}(\omega)=\sum_{y \in \mathbb{P}^{1}} \operatorname{Res}(\bar{f} \theta)=0$.
Proof for Serre duality for curves. Let \mathcal{E} be locally free, $Y=X \backslash\left\{x_{1}, \ldots, x_{n}\right\}$ be affine, and $j: Y \hookrightarrow X$. $\widehat{\mathcal{E}_{x}}=\lim _{\longrightarrow} \mathcal{E}_{x} / \mathfrak{m}_{x}^{n}=\mathcal{E}_{x} \otimes_{\mathcal{O}_{x, X}} \widehat{\mathcal{O}_{x, X}} \cong k[[t]]^{r}$ and $\widehat{\mathcal{E}}_{x}^{\circ}=\widehat{\mathcal{E}_{x}} \otimes_{\widehat{\mathcal{O}_{x, X}}} \widehat{\mathcal{O}_{x, X}} \cong k((t))^{r}$ where r is the rank of \mathcal{E}. We claim that $H^{*}(X, \mathcal{E})$ is computed by the complex
$$
\Gamma\left(\left.\mathcal{E}\right|_{Y}\right) \oplus \bigoplus_{i} \widehat{\mathcal{E}_{x_{i}}} \rightarrow \bigoplus_{i}{\widehat{\mathcal{E}_{x_{i}}}}^{\circ}
$$

One can check its cohomology is the same as the cohomology of the complex

$$
\Gamma\left(\left.\mathcal{E}\right|_{Y}\right) \rightarrow \bigoplus_{i}{\widehat{\mathcal{E}_{x_{i}}}}^{0} /{\widehat{\mathcal{E}_{x_{i}}}}^{\text {and }}
$$

But the right hand side is just the global section of $j_{*} j^{*} \mathcal{E} / \mathcal{E}$. Note that rhs at x is $\mathcal{E}_{x} \otimes_{\mathcal{O}_{x, X}}\left(\frac{\widehat{\mathcal{O}_{x, X}}}{\widehat{\mathcal{O}_{x, X}}}\right)$, and this is the stalk of $j_{*} j^{*} \mathcal{E} / \mathcal{E}$ at x. (Some more explanation: $\frac{\widehat{\mathcal{O}_{x, X}}}{\widehat{\mathcal{O}_{x, X}}}=F_{\text {res }}\left(\mathcal{O}_{x, X}\right) / \mathcal{O}_{x, X}=k[U-x] / k[U]$ where U is an affine neighborhood of x. This is a module where \mathfrak{m}_{x} acts by a local map where neither localizing by elements in \mathfrak{m}_{x} nor replacing $\mathcal{O}_{x, X}$ by $\widehat{\mathcal{O}_{x, X}}$ affects it.)

Now set $V=\bigoplus_{i} \widehat{\mathcal{E}}_{x_{i}}{ }^{\circ} \supset V_{1}=\Gamma\left(\left.\mathcal{E}\right|_{Y}\right), V_{2}=\bigoplus \widehat{\mathcal{E}_{x_{i}}}$. Then we have the topological dual $V^{V}=$ $\bigoplus_{i}\left(\widehat{\mathcal{E}^{\vee} \otimes \Omega}\right)_{x_{i}}^{\circ}$; set $V_{1}^{\prime}=\Gamma\left(\left.\Omega \otimes \mathcal{E}^{\vee}\right|_{Y}\right), V_{2}^{\prime}=\bigoplus \widehat{\Omega \otimes \mathcal{E}_{x_{i}}^{\vee}} . \quad$ By the linear algebra discussed above, it remains to check $V_{1}^{\perp}=V_{1}^{\prime}$ and $V_{2}^{\perp}=V_{2}^{\prime} . V_{2}^{\perp}=V_{2}^{\prime}$ reduces to $k[[t]]^{\perp} \cong k[[t]] d t$. We also have $V_{1}^{\prime} \subset V_{1}^{\perp}$, which follows from $\sum \operatorname{Res}_{x_{i}} \omega=0$ (the lemma above), and it remains to see $V_{1}^{\prime}=V_{1}^{\perp}$. Notice that $V_{1}^{\prime}=V_{1}^{\perp} \Leftrightarrow \operatorname{dim}\left(H^{i}\left(\mathcal{E}^{\vee} \otimes \Omega\right)\right)=\operatorname{dim}\left(H^{1-i}(\mathcal{E})\right)$ by what we know.

We want to check that $V_{1}^{\perp} / V_{1}^{\prime}$ is finite dimensional. $\left.V_{1} \subset V=k[[t]]\right]^{r}$, and as a subspace it is discrete and cocompact, i.e. has a compact complement. Discrete follows from H^{0} being finite dimensional, and cocompact follows from H^{1} being finite dimensional. Now, V_{1} is discrete implies V_{1}^{*} is compact (complete) which implies V_{1}^{\perp} is cocompact, and V_{1} cocompact implies $V_{1}^{\perp}=\left(V / V_{1}\right)^{*}$ is discrete since V / V_{1} is compact. Now in general, for discrete cocompact subspaces $U \subset W$ of V, one can check that the quotient W / U is discrete compact and finite dimensional.

Now we have that V_{1}^{\perp} contains V_{1}^{\prime} with finite codimension (thus the quotient $k[Y]$-module $V_{1}^{\perp} / V_{1}^{\prime}$ is supported at finitely many points $\left.y_{1}, \ldots, y_{m}\right)$, we can consider it as a subspace of $K\left(\left.\Omega \otimes \mathcal{E}^{\vee}\right|_{Y}\right)$, the space of rational sections of $\left.\Omega \otimes \mathcal{E}^{\vee}\right|_{Y}$.

From here there are two ways to proceed: on one hand, we can replace Y by $Y^{\prime}=Y \backslash\left\{y_{1}, \ldots, y_{m}\right\}$. Then $\Gamma\left(\left.\mathcal{E}\right|_{Y^{\prime}}\right)^{\perp}=\Gamma\left(\left.\mathcal{E}\right|_{Y}\right)_{\left(f_{1}, \ldots, f_{m}\right)}$ where localization by f_{i} correspond to removing y_{i} (observe that if $s \in \Gamma\left(\left.\mathcal{E}\right|_{Y^{\prime}}\right)^{\perp} \subset K\left(\left.\Omega \otimes \mathcal{E}^{\vee}\right|_{Y}\right)$ and s is regular at each y_{i}, then $s \in \Gamma\left(\left.\mathcal{E}\right|_{Y}\right)$), and we still get rational sections that may be singular at y_{i}; on the other hand, $\Gamma\left(\left.\Omega \otimes \mathcal{E}^{\vee}\right|_{Y^{\prime}}\right)$ consists of rational sections of $\Omega \otimes \mathcal{E}^{\vee}$ on Y that may be singular on y_{i}, so we have $V_{1}^{\perp}=V_{1}^{\prime}$ for Y^{\prime}. On the other hand, we can directly check $V_{1}^{\perp} \supset V_{1}^{\prime}$: suppose s is a rational section in V_{1}^{\perp}, and has singularities y_{1}, \ldots, y_{m}. Then since Y is affine, one can find a section s^{\prime} of \mathcal{E} such that $\left(s, s^{\prime}\right)$, which is a section of Ω, is regular at y_{i} for $i>1$, but $\operatorname{Res}_{y_{1}}\left(s, s^{\prime}\right) \neq 0$. Then we see that s cannot be orthogonal to s^{\prime}.

Now we state some standard corollaries.
Corollary 1. Define the arithmetic genus $g_{a}=\operatorname{dim}\left(H^{1}(\mathcal{O})\right)$, and the geometric genus $g_{m}=\operatorname{dim}\left(G\left(K_{X}\right)\right)$. Then apply Serre duality to $\mathcal{E}=\mathcal{O}$ to get $g_{a}=g_{m}$.

Corollary 2. Riemann-Roch implies $\operatorname{dim}(\Gamma(\mathcal{E}))-\operatorname{dim}\left(\Gamma\left(K \otimes \mathcal{E}^{*}\right)\right)=\operatorname{deg}(\mathcal{E})+\operatorname{rank}(\mathcal{E})(1-g)$. This is Riemann's form of the theorem.

Corollary 3. $\operatorname{deg}(K)=2 g-2$.
Proof. $\chi(\mathcal{O})=-\chi(K)$ by Serre duality. $\operatorname{deg}(K)=\chi(K)+g-1=2 g-2$.
The statement of the Serre duality generalizes: let X be a smooth complete (irreducible) variety of dimension n, and let \mathcal{E} be a locally free sheaf, then there is a duality $H^{n-i}\left(\mathcal{E}^{\vee} \otimes K\right) \cong H^{i}(\mathcal{E})^{*}$. It can also be generalizred to not locally free sheaves and non-smooth varieties (best described using derived categories).

For instance, let X be a smooth affine curve, and \mathscr{F} a torsion sheaf. Then there exists a canonical isomorphism $\Gamma(\mathscr{F})^{*} \cong \operatorname{Ext}^{1}\left(\mathcal{F}, K_{X}\right)$. Suppose X is smooth of dimension n, and \mathscr{F} torsion is supported at a 0 -dimensional set, then $\Gamma(\mathscr{F})^{*} \cong \operatorname{Ext}^{m}\left(\mathscr{F}, K_{X}\right)$. Generalizations of Riemann-Roch include the Hirzebruch-Riemann-Roch theorem and the Grothendieck-Riemann-Roch theorem.

Let X complete, \mathscr{F} coherent sheaf, $\chi(\mathscr{F})$ is a topological invariant of \mathscr{F}, i.e. one can give a formula for $\chi(\mathscr{F})$ in terms of topological invariants of \mathscr{F} and that of the tangent bundle of X. For instance, suppose X is locally free and is over \mathbb{C}, then it corresponds to a vector bundle, and has Chern classes. Then $\chi(\mathscr{F})$ is expressed via the Chern classes. In particular, it's constant in families. Even more generally, recall that the global section functor is the same as direct image of the map to a point, and cohomology are the higher direct images. So if we replace $X \rightarrow$ pt to an arbitrary map $X \rightarrow Y$, we get Grothendieck's version of Riemann-Roch.

A major theme of AG is the question of how to reconstruct topological invariants of $X(\mathbb{C})_{c l}$ (classical) from AG data. This of course can also generalize to other fields. There are two approaches: the de Rham approach (using differentials, e.g. if X is an affine smooth variety, then X 's regular cohomology can be computed using its algebraic de Rham complex $k[X] \xrightarrow{d} \Gamma\left(\Omega^{1} X\right) \xrightarrow{d} \Gamma\left(\Omega^{2} X\right) \rightarrow \ldots$ where $\left.\Omega^{i} X=\bigwedge^{i} \Omega X\right)$, and the etale approach (related to counting of $X\left(\mathbb{F}_{q}\right)$ and the Weil conjectures).

References

[Tat68] J. Tate. "Residues of differentials on curves." English. In: Ann. Sci. Éc. Norm. Supér. (4) 1.1 (1968), pp. 149-159. ISSN: 0012-9593.

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ We say V_{1} and V_{2} are commensurable if $V_{1} /\left(V_{1} \cap V_{2}\right)$ has finite dimension.

