
18.725 Algebraic Geometry I Lecture

Lecture 24: Birkhoff-Grothendieck, Riemann-Roch, Serre Duality

Homework Related Stuff Remark on the 10th homework: we do have counterexamples to 5(b) if the
characteristic is not 0. Consider the Drinfeld curve a.k.a. the Deligne-Lusztig variety of dimension 1, given
by xpy− ypx− zp+1 = 0 in Fp. SL2(Fp) acts on X, (a, b, c, d) acts by sending (x, y) to (ax+ b, cx+ d) is an
isomorphism of this curve. Also, in 2b) one doesn’t need the finiteness condition.

Back to Cohomology Recall that H∗ ˇ(X,F ) can be computed using 1) Cech cohomology for a fixed
affine covering, or 2) adjusted e.g. flabby resolution.

Remark 1. 1) is a particular case of 2). In particular, let j : U → X be an open embedding of U affine in
X separated, then j is adjusted to Γ. Proof: j is an affine map, so Hi(j F ) = Hi(F ) = 0 for i > 0.∗ ∗

If X = U1∪ . . .∪Un, then as an example,
⊕

ji ji
∗F →

⊕
ji1,i2 ji

∗
1,i2F → . . . is an resolution. Another∗ ∗

example: suppose X is an irreducible curve, X ⊃ Y , and Y is an affine open, say X−{x1, . . . , xn}. If F has
sections supported on xi, then we have an s.e.s. 0 → F → j j∗F∗ → j j∗F/F∗ → 0. Last term is flabby,
since it’s supported on a finite set.

Example 1. Let’s compute Hi(OP1(n)) using the 2-term complex

0→ Γ(OP1(n)) = k[X]→ Γ(OP1(n)|A1)/OP1(n))→ 0

k[x, x−1]
Using affine charts, one can compute the second term to be . The map is onto for n 0

xnk[x−1]
≥ , and

the kernel consists polynomials of degree ≤ n. Thus for n ≥ 0, dimension of H0(O(n)) = n + 1, and
H1(O(n)) = 0. For the negative cases, do inverse induction using 0 → O(n − 1) → O(n)

0
→ O → 0 or

run the same argument again. In particular, when n < 0, H is 0, and H1 has dimension −n − 1. So
H0(O(−1)) = H1(O(−1)) = 0.

This yields a classification of locally free sheaves on P1:

Theorem 1.1 (Grothendieck-Birkhoff). A locally free coherent sheaf of rank n on P1 is isomorphic to⊕n
OP1(di) for a unique collection di.

i=1

Proof. Uniqueness is left as an exercise; one way is to recover di from dimensions of Hi(E(d)) for i = 0, 1, d ∈
Z. Now let’s prove existence. We use induction on rank.

Claim: H0(E(d)) = 0 for d
N ′

� 0, and = 0 for d � 0. Proof: E is a quotient, i.e. O(−m)N � E ,

O(−m′) � E∨ =⇒ E ⊂ O
′

(m′)N and so H0(E(−d)) = 0 for d > m′. For d > m, O(d −m)N � E(d),
and the first is generated by global sections. Pick d such that Γ(E(d)) = 0 but = 0 for d′ < d, and replace E
with E(d), then we can assume Γ(E) = 0 and Γ(E(d)) = 0 for d < 0.

Pick some σ : O → E , claim: E/ im(σ) has no torsion. Proof: otherwise O(D) ↪→ E for some effective
divisor D, then Γ(E(−D)) = Γ(E(−d)) = 0 for d = deg⊕(D), contradiction. So we have 0→ O → E → E ′ → 0,

where the third is locally free. By induction, E ′ = O(di).

Claim: di ≤ 0. Proof: otherwise we can write 0 → O(−1) → E(−1) → E ′(−1) → 0. H1(O(−1)) =
0 =⇒ H0(E(−1)) � H0(E ′(−1)). Suppose for some d ≥ 0, we can write E ′ = O(d) ⊕ . . ., then we have
E ′(−1) = O(d− 1)⊕ . . ., hence H0(E ′(−1)) = 0 =⇒ H0(E(−1)) = 0, contradiction.

It remains to check that the s.e.s. 0
∨

→ O → E → E ′ → 0 splits. Easier to check that the dual sequence
0 → E ′ → E∨ → O → 0 splits. To see this, it’s enough to see that Γ(E∨) → Γ(O) is onto. First one is
Hom(O, E∨), second being k. But E ′∨ is the sum of all O(di) where di ≥ 0, so H1(E ′∨) = 0, and this is the
obstruction to the surjectivity using the l.e.s.

Or we can invoke a little homological algebra and just say the following: Ext1(A,B) parametrizes the
isomorphism classes of extensions 0→ B → C → A→ 0. Note that Ext1(E ′, 0) = H1(E ′∨) = 0.

Here are some general facts, probably to be covered in 18.726:
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1. Hi(X,F ) = 0 for i > dim(X), where F is an quasicoherent sheaf.

2. If X is complete and F coherent, then Hi(X,F ) is finite-dimensional.

The proof of these statements are beyond the scope of this course, but at least we can prove them for X
of dimension 1.

Proof. We can first reduce to the case of X a smooth (eqv. normal) curve. Let q : Y → X be the
normalization of X, and F a coherent sheaf on X. Consider ϕ : F → q q∗F : the kernel and cokernel of∗
this map are supported at singular points of X, and thus are torsion sheaves. Coherent torsion sheaves are
extensions of copies of skyscraper sheaves supported at the singular points, so they have finite dimensional
H0 and higher cohomology groups vanish, so by the cohomology les it suffices to prove the corresponding
statements for q q∗F . Since q is an affine map, Hi(X, q q∗F ) = Hi(q∗X, q∗F ), so we reduce to the smooth∗ ∗
case.

Now a smooth curve X admits an affine map f to the projective line P1, which is defined by any non-
constant element of the field of rational functions when X is connected, and is finite when X is complete.
We have that H∗(X,F ) = H∗(P1, f F ), so we further reduce to proving the following statements for any∗
quasicoherent sheaf F on P1:

1. Hi(P1,F ) = 0 for i > 1;

2. If F is coherent, then H0 and H1 are finite dimensional.

The first statement is clear from the Cech cohomology computation, where we use the standard 2-piece affine
covering. For the second one, write F as a sum of a locally free sheaf and a torsion sheaf. A coherent torsion
sheaf on curve clearly has H0 finite dimensional and H1 vanishing, and the case for locally free sheaf follows
from Grothendieck-Birkhoff.

Euler Characteristic Define the Euler characteristic χ : K0(Coh(X)) → Z for X a complete algebraic

variety. One can compute that χ([F ]) = ( is
i

−1)i dimHi(F ), and the l.e.s. of cohomology shows that χ

additive on short exact sequences.

∑

Theorem 1.2 (Riemann-Roch for Curves). Let X be irreducible complete (or smooth, for convenience’s
sake) curve. Then χ(F ) = deg(F )− rank(F )(ga − 1) where ga = dimH1(O).

ga is the arithmetic genus, which equals the geometric genus for nonsingular curves.

Proof. Enough to check on generators of K0(Coh(X)).

Lemma 1. O(X) along with Ox generate the group.

To see it implies the theorem: if F = Ox, lhs⊕= 1 = rhs. if OX , lhs = 1 − ga = rhs. Proof of the

lemma: recall that if F is torsion then it is some Oxi
. Now we do induction on rank: if F has rank

i and torsion-free, find∑some F |U = X \ {x1, . . . , xn} that has a section σ : O → F . Then it extends to

O(−D) ↪→ F for∑D = dixi for some di > 0, then we’re done because F/O(−D) has smaller rank, and

O(−D) ≡ [O]− di[
i

Oxi
].

Theorem 1.3 (Serre Duality). If E is a locally free sheaf on a complete smooth (this time essential) irre-
ducible curve, then we have a canonical isomorphism Γ(E)∗ ∼= H1(E∨ ⊗KX).

Noting that H1(KX) ∼= k, and we said there’s a map Hi(F ) ⊗Hj(G ) → Hi+j(F ⊗ G ), so the pairing
comes from E ⊗ (E∨ ⊗K)→ K. The proof we shall present below is based on Tate’s paper [Tat68].
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Proof. Recall that for x ∈ X, Ôx,X
∼= k[[t]], and the residue field is just k((t)), the Laurent power se-

ries. So Ôx,X is a complete topological vector space (with Tychonoff topology), and the residue field is a
linear topological vector space. Also recall an elementary duality that generalizes the usual linear duality
of vector spaces, as a functor from discrete spaces to complete vector spaces, given by V 7→ Hom(V, k),
and the other way by W HomCont(W,k). In particular, k((t))∨ = k((t)) (the topological dual),
and k[[t]]∨ ∼= t−1 1

7→ ∼
k[t− ] =⇒ t−1k[t−1]∨ ∼= k[[t]] (notice this is non-canonical). Observation: we have

k((t))∨ ∼= Ω(k((t))/k) ∼= k((t))dt coming from the pairing (f, ω) 7→ res(fω).
On the other hand, we have

(Ex ⊗Ox,X Fres(Ôx,X))∨ ∼= (E∨ ⊗KX)⊗Ox,X
Fres(Ôx,X)

where Fres denotes the residue field. Here’s the overall plan of the proof: we have Y = X \ {x1, . . . , xn
◦

}
affine. Call the⊕left side (Êx )∨, and define Ê⊕ x = Ex ⊗Ox,X

Ôx,X . Then cohomology of E is computed using
◦

the complex Ê
⊥

x ⊕ Γ(E|Y ) → Êx . We’ll check that Êx = (E ∨̂ ⊗KX) and Γ(E|Y )∨ = Γ(E∨ ⊗KX),
x x

and conclude that (Ê
◦

x )∨ = E ∨̂
∨

⊗KX .
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