Lecture 23: Derived Functors, Existence of Sheaf Cohomology

Prelude: the cousin problem How do we integrate a rational function $\frac{P(x)}{Q(x)}$? We decompose it into a sum $\sum \frac{a_i}{(x-b_i)^{d_i}}$ + polynomial. Conversely, given a complete curve X, and a locally free sheaf \mathcal{E} , one may want to understand if \mathcal{E} has a section with singularities at some fixed x_1, \ldots, x_n with fixed prescribed singular terms of x_1, \ldots, x_n . To be more specific, $\sigma \in \Gamma(\mathcal{E}|_{X-\{x_1,\ldots,x_n\}}) = \Gamma(j_*j^*\mathcal{E})$ where $j: X - \{x_1,\ldots,x_n\} \to X$, and by singular term we mean a section of $j_*j^*\mathcal{E}/\mathcal{E}$, which is a quasicoherent sheaf supported at x_1, \ldots, x_n . Or one can write $\sigma \in \Gamma(\mathcal{E}(D))$ where $D = \sum_i d_i x_i$, and the singular term is given by a section of $\mathcal{E}(D)/\mathcal{E}$.

This problem can be solved using cohomology. For instance, let $\mathcal{E} = K_X$ be the canonical class, X being smooth irreducible. For instance, let $X = \mathbb{P}^1$, and $x_1 = 0, x_2 = \infty$. Consider the form that takes the shape $\frac{dz}{z} + (\text{regular at } 0)$, and $2\frac{dt}{t} + (\text{regular at } \infty)$. Can such form exist? No. This follows from Stoke's theorem, which basically says $\sum_{x} \text{res}_x \omega = 0$. However, in fact for $\mathcal{E} = K_X$ this is the only obstruction: this follows from the fact that $H^1(K_X)$ is one-dimensional.

Back to the main topic Last time we talked about universal δ -functors $\mathcal{R}^i \mathcal{F}$ for a given functor between abelian categories.

Proposition 1 (Grothendieck). A δ -functor (\mathcal{F}^i) for given \mathcal{F} is universal provided that \mathcal{F}^i for i > 0 is effaceable: for any $M \in A$ and any $m \in F^iM$, there exists some monomorphism $\varphi : M \to N$, such that $\mathcal{F}^i(\varphi)(m) = 0$.

In practice, we often check the stronger condition that $\exists \varphi : M \hookrightarrow N$, such that $\mathcal{F}^i(\varphi) = 0$. Or even stronger one: there exists N such that $\mathcal{F}^i(N) = 0$.

Let X be a separated algebraic variety. Fix an affine open cover $X = U_1 \cup \ldots \cup U_n$. Recall that we have $0 \to \Gamma(F) \to \bigoplus_i \Gamma(F|_{U_i}) \to \bigoplus_{i,j} \Gamma(F|_{U_i \cap U_j})$. This can be extended to a Čech complex $\check{C}(F)$ of the covering:

$$0 \to \bigoplus_{i} \Gamma(F|_{U_i}) \to \ldots \to \bigoplus_{i_1 < \ldots < i_k} \Gamma(F|_{U_{i_1} \cap \ldots \cap U_{i_k}}) \to \ldots$$

with the obvious map having the necessary sign change. One can easily check this is a complex and thus defines a functor $\mathbf{QCoh}(X) \to \mathbf{Complexes}$, which is exact by exactness of Γ on $\mathbf{QCoh}(X)$.

Proposition 2 (Snake Lemma). A short exact sequence of complexes yields a long exact sequence of cohomology (see Wikipedia for the exact statement).

We also mentioned that $H^0(\check{C}(\mathscr{F})) = \Gamma(X,\mathscr{F})$. Now we claim that $\mathscr{F} \mapsto H^i(\check{C}(\mathscr{F}))$ is an universal δ -functor. Let's show it's effectable. Let $j_i : U_i \to X$. Consider the embedding $\mathscr{F} \to \bigoplus j_i^* j_{i*} \mathscr{F}$, where

we denote the latter object by \mathscr{G} . Claim: $H^i(\check{C}(\mathscr{G})) = 0$ for i > 0 (reads: $\check{C}(\mathscr{G})$ is *acyclic*). Note that $\Gamma_{i_1,\ldots,i_k}(\mathscr{G}) \xrightarrow{\sim} \Gamma_{i_1,\ldots,i_k,n}(\mathscr{G})$ when $i_k \neq n$. So $\check{C}(\mathscr{F})$ contains a subcomplex $\check{C}' = \bigoplus \Gamma_{i_1,\ldots,i_k|i_k=n}$, and we have a quotient complex \check{C}'' given by $\bigoplus \Gamma_{i_1,\ldots,i_k|i_k< n}$. Then we have a s.e.s. $\check{C}'(\mathscr{G}) \to \check{C}(\mathscr{G}) \to \check{C}''(\mathscr{G})$, to which if you apply Snake lemma, then the connecting homomorphism will be an iso, thus yielding that the central one is acyclic. (This follows from the observation that $\check{C}(\mathscr{G}) = \operatorname{Cone}(\check{C}'' \to \check{C}'[1])$.) Thus $\mathcal{R}^i\Gamma(\mathscr{F}) = \operatorname{H}^i(\check{C}(\mathscr{F}))$ for any quasicoherent sheaf F.

Remark 1. More generally, we can use a similar construction with the Čech complex that is the direct limit over all coverings. A theorem of Grothendieck's states that if X is paracompact, then this computes the cohomology for any sheaf F.

Example 1. Let X be an algebraic variety. Let $\mathscr{F} = \mathcal{O}^*$ be the sheaf of invertible regular functions. Let's consider $\mathrm{H}^1(\mathcal{O}^*)$. First fix an covering $X = \bigcup U_i$. Then consider the set $f_{ij} \in k[U_i \cap U_j]^*$ such that on

 $U_i \cap U_j \cap U_k$, $f_{ij}f_{jk} = f_{ik}$, modulo $f_{ij} = \varphi_i \varphi_j^{-1}, \varphi_i \in k[U_i]^*$. This defines an invertible sheaf on X. Modulo proof, we know that $\mathrm{H}^1(X, \mathcal{O}^*) \cong \mathrm{Pic}(X)$.

Remark 2. For any \mathscr{F} and any covering U_i , there exists a canonical map $H^i(\check{C}(\mathscr{F})) \to H^i(\mathscr{F})$.

Remark 3. We have the following:

- 1. For \mathscr{F} quasicoherent, $\mathcal{R}^i\Gamma_{Sh(X)}(\mathscr{F}) = \mathcal{R}^i\Gamma_{\mathcal{O}-Mod(X)}(\mathscr{F}) = \mathcal{R}^i\Gamma_{QCoh(X)}(\mathscr{F}).$
- 2. Other relevant derived functors: we have a parallel definition for right exact functors, which then yields $\mathcal{L}^{-i}(\mathcal{F}) = \mathcal{L}_i(\mathcal{F})$ (two different notations) that goes as follows:

 $\dots \to \mathcal{L}^{-1}(C) \to \mathcal{F}(A) \to \mathcal{F}(B) \to \mathcal{F}(C) \to 0$

the case relevant to us is tensor product of modules. For commutative ring A, and a fixed module M, let $\mathcal{F}(N) = M \otimes_A N$, then $\mathcal{L}^{-i}\mathcal{F}(N) = \operatorname{Tor}_i^A(M,N)$. Another funcotr: $f: X \to Y$, then $f^*: \mathbf{QCoh}(Y) \to \mathbf{QCoh}(X)$. The dual example: fix some $M \in A$ (say $A = \mathbf{QCoh}(X)$), and let $\mathcal{F}(N) = \operatorname{Hom}(M,N)$, then $\mathcal{R}^i\mathcal{F} = \operatorname{Ext}^i(M,N)$. For instance for \mathcal{O} the structure sheaf, we have $\operatorname{Ext}^i(\mathcal{O},\mathcal{F}) = \operatorname{H}^i(\mathcal{F})$.

3. From a homological point of view, all of $\mathcal{R}^i \mathcal{F}$ can be combined into a functor between derived categories, and is usually called the derived functor.

In general, the procedure to compute $\mathcal{R}^i(\mathcal{F})$ (and $\mathcal{L}^{-i}(\mathcal{F})$ likewise) is to use resolutions. Given $M \in A$, take its resolution $C = (0 \to M^0 = M \to M^1 \to \ldots)$, where $H^i(M) = 0$ for i > 0, and $H^0(C) = M$. Given a resolution C, then $\mathcal{F}(C)$ is a complex in B, and then we can compute its cohomology there.

Proposition 3. There is always a canonical map $H^i(\mathcal{F}(C)) \to \mathcal{R}^i \mathcal{F}(M)$; moreover, it is an isomorphism if M^i are adjusted to \mathcal{F} . (An object M is called adjusted to \mathcal{F} if $\mathcal{R}^i \mathcal{F}(M) = 0$. Of course, for left exact functors we use left resolutions.)

An injective object is adjusted to any left exact functor. If we have *enough injectives* (i.e. for any M there is a monomorphism $M \hookrightarrow I$ into some injective object I), then any left exact functor has derived functors. Similarly we have the concept of projective objects and projective resolution. (Recall from homework that **QCoh**(X) doesn't have enough projectives, but it does have enough injectives.) One more concept: Flabby (flasque) sheaves are adjusted to Γ ; by flabby we mean that for any $U \supset V, \Gamma(U, \mathscr{F}) \rightarrow \Gamma(V, \mathscr{F})$ is onto.

Recall that $\Gamma(X,\mathscr{F}) = \pi_*(\mathscr{F})$ where $\pi : X \to \text{pt.}$ Also recall that f_* is left exact for any $f : X \to Y$ of algebraic varieties, so we can also consider $\mathcal{R}^i f_*$. Recall also that f_* is exact if f is an affine morphism. In general (say X is separated) we can write $X = \bigcup U_i$ such that $f|_{U_i}$ is affine (e.g. U_i are affine), then compute $\mathcal{R}^i f_i \mathscr{F}$ using the Čech complex.

Proposition 4. If f is affine, \mathscr{F} is quasicoherent, then $\mathrm{H}^{i}f_{*}\mathscr{F} = \mathrm{H}^{i}(\mathscr{F})$.

Proof. For separated Y, the Čech complexes agree if we use an affine covering of Y and cover X with their preimages under f. In general, can take limit over all affine coverings.

Let X be a curve, consider $\mathscr{F} \to j_*j^*\mathscr{F} \to j_*j^*\mathscr{F} \to 0$ for $j: U \hookrightarrow X$ of an affine set U, then we claim this is an adjusted resolution of \mathscr{F} to Γ . (This links back to the beginning of the lecture.)

MIT OpenCourseWare http://ocw.mit.edu

18.725 Algebraic Geometry Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.