Lecture 22: Bertini's Theorem, Coherent Sheves on Curves

Let's consider some ways to construct smooth varieties.
Theorem 1.1 (Bertini's Theorem). Let $X \subseteq \mathbb{P} V$ be a smooth subvariety. Then for a generic hyperplane H, $Y=X \cap H$ is again smooth.

Recall that the set of hyperplanes is parametrized by the dual projective space $\mathbb{P} V^{\vee}$. To say that a hyperplane is generic is equivalent to saying that there is a nonempty open subset $U \subseteq \mathbb{P} V^{\vee}$ containing the point in $\mathbb{P} V^{\vee}$ corresponding to that hyperplane and such that each hyperplane in U possesses the desired property.

Proof. We can assume that X is irreducible. Indeed, if X has multiple irreducible components (i.e. is not connected) and if we know the claim for each irreducible component, then we have a finite set of open subsets in $\mathbb{P} V^{\vee}$, whose intersection is again open and consists of hyperplanes whose intersection with X is smooth.

Let $d=\operatorname{dim}(X), n=\operatorname{dim}(\mathbb{P} V)$. For all $x \in X$, we have $T_{x} X$ of dimension d, and $T_{x} X \subseteq T_{x} \mathbb{P} V$. If $x \in H$, then $H \cap X$ will be smooth at x if $T_{x} H \not \supset T_{x} X$. Consider the following subset $Z \stackrel{\text { def }}{=}\{(H, x) \mid H \ni$ $\left.x, T_{x} H \supset T_{x} X\right\}$ of the product $\mathbb{P} V^{\vee} \times X$. One easily sees that is is closed. The set of H for which $H \cap X$ is singular is the image of Z under the projection $\mathbb{P} V^{\vee} \times X \rightarrow \mathbb{P} V^{\vee}$.

We will now proceed by dimension count. First, we want to calculate the dimension of Z. For this, consider the projection $Z \rightarrow X$. The two conditions from the definition of Z clearly say that if $(H, x) \in Z$, then H contains a subspace W of dimension d isomorphic to \mathbb{P}^{d}, so the fiber at each point is $\left\{H \in \mathbb{P} V^{\vee} \mid\right.$ $H \supset W\}=\mathbb{P}(V / W)^{\vee}$. Since $\operatorname{dim}(V)=n+1, \operatorname{dim}(W)=d+1$, we have the fiber isomorphic to \mathbb{P}^{n-d-1}. Recall from a theorem last time that a generic fiber has dimension equal to the difference of the dimensions of the two spaces, so $\operatorname{dim}(Z)=n-1$.

If we let $\pi: Z \rightarrow \mathbb{P} V^{\vee}$, then $\overline{\pi(Z)}$ has dimension at most $n-1$, so the complement $\mathbb{P} V^{\vee} \backslash \overline{\pi(Z)}$ is not empty. Moreover, this complement is exactly the desired open subset, and this concludes the proof.

Corollary 1. A generic hypersurface of degree d is smooth. Moreover, if $X \subset \mathbb{P}^{n}$ is smooth, for a generic hypersurface S of degree $d, S \cap X$ is smooth.
Proof. Use Veronese embedding, consider $\mathbb{P}^{n} \subset \mathbb{P}^{N}$ where $\left(t_{1}, \ldots, t_{n}\right) \rightarrow\left(t^{I}\right)$ where I ranges over all monomials of degree d. Then a hypersurface becomes a hyperplane in this case, then we reduce to the previous case.

Remark 1. Assume that X is irreducible of dimension d. If X is not contained in a hyperplane H, then we know that each component of $X \cap H$ has dimension $d-1$. If X is projective, then $X \cap H$ is nonempty. In fact, one can check that if $\operatorname{dim}(X)>1$ and H is a general hyperplane, then $X \cap H$ is irreducible.

Remark 2. Bertini's theorem refers to a range of theorems. For instance, we can allow X to be singular, and one of the variations of Bertini's theorems will say something about the singularities of $X \cap H$.

Remark 3. We can also relate the topology of X and that of $X \cap H$ - this is called the Lefschetz Hyperplane Theorem. For instance, the map $H^{i}(X, \mathbb{C}) \rightarrow H^{i}(X \cap H, \mathbb{C})$ is an isomorphism up to the middle degree for a general hyperplane H.

Coherent Sheaves on Curves Now we start the last main topic - the sheaf cohomology. We will mostly focus on the case of sheaves on curves.

Let \mathcal{F} be a coherent sheaf on a smooth irreducible curve.
Definition 1. The torsion subsheaf $\mathcal{T} \subseteq \mathcal{F}$ is a subsheaf of \mathcal{F} generated by torsion sections.
The torsion subsheaf \mathcal{T} has finite support (by Noetherian property and due to the dimension equal to one), and $\mathcal{F} / \mathcal{T}$ is a torsion free sheaf. But we know that a finitely-generated torsion free module over a DVR is free, so a torsion free sheaf is locally free. Moreover, $0 \rightarrow \mathcal{T} \rightarrow \mathcal{F} \rightarrow \mathcal{F} / \mathcal{T} \rightarrow 0$ splits noncanonically by constructing a surjection $\mathcal{F} \rightarrow \mathcal{T}$; this follows from the corresponding result about modules over DVRs. It follows that a coherent sheaf \mathcal{F} on a curve can be decomposed into a direct sum $\mathcal{T} \oplus \mathcal{F}^{\prime}$, where the first summand is a torsion sheaf and the second one is torsion-free.

Every torsion sheaf \mathcal{T} has finite length. If its support is irreducible, then it is just a point, so in this case $\mathcal{T} \cong \mathcal{O}_{x}$ for some x. Actually, a torsion sheaf has a filtration with $\mathrm{gr} T=\bigoplus \mathcal{O}_{x_{i}}$. In fact, this result is true for a torsion sheaf on any variety X if the sheaf has finite support.

Now let \mathcal{E} be a locally free sheaf, and $\mathcal{E}^{\prime} \subset \mathcal{E}$ be a subsheaf. Of course, if \mathcal{E} is torsion-free, then so is \mathcal{E}^{\prime}. However, this is not the case for $\mathcal{E} / \mathcal{E}^{\prime}$. Consider the following example where we have torsion in the quotient:

$$
0 \rightarrow \mathcal{O}(-x) \rightarrow \mathcal{O} \rightarrow \mathcal{O}_{x} \rightarrow 0
$$

Another example is when we can take $X=\operatorname{Spec}(k[t])$, and consider $\mathcal{O} \xrightarrow{t} \mathcal{O}$.
Locally we have $\mathcal{E}=\mathcal{O}^{\oplus r}, \mathcal{E}^{\prime}=\mathcal{O}^{\oplus r^{\prime}}$, then $\mathcal{E}^{\prime} \rightarrow \mathcal{E}$ can be given by a $r^{\prime} \cdot r$ matrix with entries in \mathcal{O}.
Exercise 1. Using Nakayama lemma, show that the quotient has torsion at x if and only if evaluating matrix coefficients at x gives us a matrix of rank less than r^{\prime}.

We want to call a subbundle such a locally free sheaf that taking quotient with respect to it gives a locally free sheaf.

Example 1. For example, if $r^{\prime}=1$, this just means sections can vanish at that point. Consider $\mathcal{O} \rightarrow \mathcal{O}^{\oplus r}$, given by $\left(f_{1}, \ldots, f_{r}\right)$, then cokernel has torsion at x iff $f_{i}(x)=0$ for all i. Recall that $f_{i} \in \mathcal{O}_{x, X}$, and this holds if the valuation of each f_{i} is greater than 0 . If d is the minimum of these valuations, and t is some element of $\mathcal{O}_{x, X}$ with valuation 1 (i.e. $t \in \mathfrak{m}_{x}-\mathfrak{m}_{x}^{2}$), then we have $\mathcal{O} \xrightarrow{t^{d}} \mathcal{O} \xrightarrow{f_{i} / t^{d}} \mathcal{O}^{r}$ which is the same as the map above. The second map has no cotorsion (i.e. torsion in the cokernel), and the image is independent of the choices.

In general, for $\mathcal{E}^{\prime} \subset \mathcal{E}$, there exists unique $\mathcal{E}^{\prime \prime}$, such that $\mathcal{E}^{\prime} \hookrightarrow \mathcal{E}^{\prime \prime} \hookrightarrow \mathcal{E}$ where the second map has no cotorsion, and the rank of $\mathcal{E}^{\prime \prime}$ is the same as rank of \mathcal{E}^{\prime} i.e. $\mathcal{E}^{\prime \prime} / \mathcal{E}^{\prime}$ is torsion. To construct such a sheaf $\mathcal{E}^{\prime \prime}$, we first take the torsion subsheaf $\mathcal{T} \subset \mathcal{E} / \mathcal{E}^{\prime}$ and then consider its preimage with respect to the surjection $\mathcal{E} \rightarrow \mathcal{E} / \mathcal{E}^{\prime}$. The latter will be the desired $\mathcal{E}^{\prime \prime}$, as one can easily verify.

Definition 2. We call $\mathcal{E}^{\prime \prime}$ the saturation of \mathcal{E}^{\prime} in \mathcal{E}.

Basic invariants of a coherent sheaf: rank and degree

Definition 3. Let \mathcal{F} be a coherent sheaf. The rank of \mathcal{F} is defined as the rank of the locally free sheaf $(\mathcal{F} /$ torsion) when we work over smooth varieties. More generically (for any irreducible variety), one defines rank as follows. For a field $K \stackrel{\text { def }}{=} \underset{U}{\lim } k[U]$, we have the following K-vector space: $V_{\mathcal{F}} \stackrel{\text { def }}{=} \underset{U}{\lim } \mathcal{F}[U]$. The rank is the dimension $\operatorname{rk}(\mathcal{F}) \stackrel{\text { def }}{=} \operatorname{dim}_{K}\left(V_{\mathcal{F}}\right)$.

One can show that rank is equal to the dimension of a generic fiber of \mathcal{F}.
It is clear from the definition that rank is additive in short exact sequences.
Definition 4. $K^{0}(\mathcal{A})$, the Grothendieck group of an abelian category \mathcal{A}, is the free abelian group generated by isomorphism classes in \mathcal{A} modulo the relation that, given $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, we have $[B]=[A]+[C]$.

This is the universal object for invariants that are additive in short exact sequences. Thus for instance rank is a homomorphism $K^{0}(\operatorname{Coh}(X)) \rightarrow \mathbb{Z}$. Note that $K^{0}(\operatorname{Coh}(X))$ can be explicitly described for X of dimension one.

Assume now that X is complete. Define another homomorphism $\delta: K^{0}(\operatorname{Coh}(X)) \rightarrow \mathbb{Z}$ such that $\delta([\mathcal{E}]) \mapsto \operatorname{deg}(\operatorname{det}(\mathcal{E}))$ where \mathcal{E} is locally free. Additivity comes from multiplicativity of the determinant in short exact sequences. For torsion sheaves, we set δ to be the length of \mathcal{T}, which is the same as the dimension of $\Gamma(\mathcal{T})$. (Recall that the length ℓ is defined as the number of summands in gr $\mathcal{T}=\bigoplus_{i=1}^{\ell} \mathcal{O}_{x_{i}}$.)

This would make sense. Consider the short exact sequence $0 \rightarrow \mathcal{O} \rightarrow \mathcal{O}(D) \rightarrow \mathcal{O}_{D} \rightarrow 0$. The first sheaf has degree 0 , the second second one has degree $\operatorname{deg}(D)$, whereas the leftmost has length $\operatorname{deg}(D)$. But we still need a formal check.

Proposition 1. δ is a well-defined homomorphism.
Lemma 1. If we have a short exact sequence $0 \rightarrow \mathcal{E} \rightarrow \mathcal{E}^{\prime} \rightarrow \mathcal{T} \rightarrow 0$, where \mathcal{T} is torsion and the other two sheaves are torsion free, then $\operatorname{deg}\left(\mathcal{E}^{\prime}\right)=\operatorname{deg}(\mathcal{E})+\ell(\mathcal{T})$.

Proof. Induction on $\ell(\mathcal{T})$, reduce to $\mathcal{T}=\mathcal{O}_{x}$, and $r=\operatorname{rank}(\mathcal{E})=\operatorname{rank}\left(\mathcal{E}^{\prime}\right)$. We claim that $\Lambda^{r}(\mathcal{E}) \rightarrow \Lambda^{r}\left(\mathcal{E}^{\prime}\right)$ has a zero of order 1 at x. Locally it looks like $\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ 0 & 0 & \ldots & t\end{array}\right)$ where $t \in \mathfrak{m}-\mathfrak{m}^{2}$.

Proof of the Proposition. We have $\delta(\mathcal{E} \oplus \mathcal{T})=\operatorname{deg}(\operatorname{det}(\mathcal{E}))+\ell(\mathcal{T})$. Need to check that for $0 \rightarrow \mathcal{F}^{\prime} \rightarrow \mathcal{F} \rightarrow$ $\mathcal{F}^{\prime \prime} \rightarrow 0$, we have the additive property. First consider $0 \rightarrow \mathcal{T}^{\prime} \rightarrow \mathcal{T} \rightarrow \mathcal{T} / \mathcal{T}^{\prime} \subseteq \mathcal{T}^{\prime \prime} \rightarrow 0$, then we have $\delta(\mathcal{T})=\delta\left(\mathcal{T}^{\prime}\right)+\delta\left(\mathcal{T} / \mathcal{T}^{\prime}\right)$ also $\delta(\mathcal{F})=\delta(\mathcal{F} / \mathcal{T})+\delta(\mathcal{T})$ and same for $\mathcal{F}^{\prime}, \mathcal{F}^{\prime \prime}$, so we reduce to the case where $\mathcal{F}=\mathcal{E}$ is torsion free. If \mathcal{F}_{s}^{\prime} is the saturation of \mathcal{F}^{\prime}, then $\delta\left(\mathcal{F}_{s}^{\prime}\right)=\delta\left(\mathcal{F}^{\prime}\right)+\delta\left(\right.$ torsionof $\left.\mathcal{F}^{\prime \prime}\right)$, so replacing \mathcal{F}^{\prime} by \mathcal{F}_{s}^{\prime} doesn't check the RHS of $\delta(\mathcal{F})+\delta\left(\mathcal{F}^{\prime}\right)+\delta\left(\mathcal{F}^{\prime \prime}\right)$, so we can check all three of them to locally free, which we have already discussed above.

Remark 4. The homomorphism δ can be refined to a homomorphism $K^{0}(\operatorname{Coh}(X)) \rightarrow \operatorname{Pic}(X)$ followed by the degree map $\operatorname{Pic}(X) \rightarrow \mathbb{Z}$.

Cohomology of quasicoherent sheaves Cohomology is an important invariant of quasicoherent sheaves. To cut a long story short, cohomology of a sheaf is the derived functor of the global sections. Some theory can be found in Grothendieck's Tohoku paper, which is worth reading. A derived functor accounts for the nonexactness of the initial functor between abelian categories.

Definition 5. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be a left exact functor between abelian categories. $A \delta$-functor is a collection of functors $F^{i}: \mathcal{A} \rightarrow \mathcal{B}$ such that for every short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ we have a long exact sequence $0 \rightarrow F(A) \rightarrow F(B) \rightarrow F(C) \rightarrow F^{1}(A) \rightarrow F^{1}(B) \rightarrow F^{1}(C) \rightarrow F^{2}(A) \rightarrow \ldots$ that is functorial in short exact sequences.

Definition 6. A δ-functor is universal if it has a canonical morphism from any δ-functor. In other words, it is the terminal object in the category of δ-functors.

Definition 7. The universal δ-functor is called the derived functor, and is of course unique if exists. We denote it by $\mathcal{R}^{i} F$.

In our case, $\mathcal{A}=\mathrm{QCoh}(X), \mathcal{B}=$ Vect, $F=\Gamma$.
Next class we'll show the existence along with some properties, including Serre duality for curves.

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

