Lecture 20: (Co)tangent Bundles of Grassmannians

Last time we proved that $X \subseteq \mathbb{A}^n$ is smooth at x if and only if locally given by equations f_1, \ldots, f_m such that $df_i|_x$ are linearly independent. We say that \mathscr{I}_X is locally generated by f_1, \ldots, f_m . In fact, any f_1, \ldots, f_m such that $df_i|_x$ is a basis for ker $(T_x^* \mathbb{A}^n \to T_x^* X)$ would work. Take Z generated by the equations f_1, \ldots, f_m . We checked that $\dim_x(Z) = \dim_x(X)$.

Proposition 1. The following hold:

- 1. If $Z \subseteq X$ is a closed subvariety, then we have $\mathscr{I}_Z/\mathscr{I}_Z^2 \to \Omega_X|_Z \to \Omega_Z \to 0$.
- 2. If \mathscr{I}_Z is locally generated by functions with linearly independent differential (that is, for all x in Z, there exists $U \ni x, f_1, \ldots, f_m$ on U such that $\mathscr{I}_{Z \cap U} = (f_1, \ldots, f_m), df_i|_y$ is linearly independent for any $y \in U$), then the sequence is exact at left.
- 3. If X is smooth, the last condition can be checked at x. (Ω_X is locally linearly independent of $df_i|_x$ is an open condition.)
- Proof. 1. $\Omega_X|_Z$ surjects to Ω_Z by sending fdg to $f|_Zdg|_Z$, and we claim that the kernel is generated by $fg,g \in \mathscr{I}_Z$. This would follow from $\operatorname{Der}(\mathcal{O}_Z,M) = \{\delta \in \operatorname{Der}(\mathcal{O}_X,M) \mid \delta(\mathscr{I}_Z) = 0\}$, so it remains to see that $f \mapsto df|_Z$ is a well-defined map of $\mathcal{O}_Z \mod \mathscr{I}_Z/\mathscr{I}_Z^2 \to \mathcal{O}_X|_Z$. Observe that $f,g \in \mathscr{I}_Z \Longrightarrow d(fg)|_Z = 0$.
 - 2. If $\mathscr{I}_Z = (f_1, \ldots, f_m)$, we have the following diagram:

where the diagonal map is guaranteed to be injective on every fiber by condition b), so is injective.

3. We always have it for affine space \mathbb{A}^n . General case is proved similarly.

Corollary 1. X smooth, $Z \subseteq X$ closed, then Z is smooth if and only if locally Z is given by equation with linearly independent differentials.

Proof. Use proposition 3) above. Locally we assume $X \subseteq \mathbb{A}^n$, and then X is cut out by some g_1, \ldots, g_p with linearly independent differentials, so $(g_1, \ldots, g_p, \tilde{f}_1, \ldots, \tilde{f}_n)$ are equations for Z with linearly independent differentials, so Z is smooth.

Last time we defined ω , the canonical bundle. Let K be the corresponding canonical divisor class.

Corollary 2. If X, Z smooth, Z closed in X, then we get a s.e.s. of locally free sheaves $0 \to \mathscr{I}_Z/\mathscr{I}_Z^2 = T_Z^*X \to \Omega_X|_Z \to \Omega_Z \to 0$, and thus $K|_Z = K_Z \omega(\mathscr{I}_Z/\mathscr{I}_Z^2)$. If Z is a divisor, then $\omega(\mathscr{I}_Z/\mathscr{I}_Z^2) = \mathscr{I}_Z/\mathscr{I}_Z^2 = \mathcal{O}(-D)|_Z$, thus $K_X(D)|_D = K_D$, which is the adjunction formula.

Remark 1. Sections of $K_X(D)$ are top degree forms on X with poles of order ≤ 1 on D. The map $K_X(D)|_D \to K_D$ sends ω to its residue.

Proposition 2. We have a s.e.s. $0 \to \Omega_{\mathbb{P}^n} \to \mathcal{O}(-1)^{\oplus (n+1)} = \mathcal{O}(-1) \otimes V^* \to \mathcal{O} \to 0$ where $\mathbb{P}V = \mathbb{P}^n$. As a corollary, $K_{\mathbb{P}^n} = \mathcal{O}(-(n+1))$.

More generally, consider the Grassmannian $\operatorname{Gr}(k,n)$, consisting of all k-dimensional linear subspaces Vof an n-dimensional space W. Then $\mathcal{O}_{\operatorname{Gr}(k,n)}^{\oplus n}$ has a locally free *tautological subsheaf* \mathcal{V} of rank k (that is locally a direct summand) such that a section s of $\mathcal{O} \otimes W$, i.e. a map $s : \operatorname{Gr}(k,n) \to W$, belongs to \mathcal{V} if for all $x, s(x) \subseteq \mathcal{V}_x$. **Proposition 3.** $T_{Gr(k,n)} = \operatorname{Hom}(\mathcal{V}, W \otimes \mathcal{O}/\mathcal{V})$ and $\Omega_{Gr(k,n)} = \operatorname{Hom}(W \otimes \mathcal{O}/\mathcal{V}, \mathcal{V}).$

Let's see how this implies the last proposition: let $k = 1, \mathcal{V} = \mathcal{O}(-1)$. Then Hom $\left(\mathcal{O}(-1), \frac{\mathcal{O}^{\oplus(n+1)}}{\mathcal{O}(-1)}\right) = \frac{\operatorname{Hom}(\mathcal{O}(-1), \mathcal{O}^{\oplus(n+1)})}{\operatorname{Hom}(\mathcal{O}(-1), \mathcal{O}(-1))} = \frac{\mathcal{O}(1)^{\oplus(n+1)}}{\mathcal{O}}$ and $\Omega = \ker(\mathcal{O}(-1)^{n+1}, \mathcal{O})$.

Proof of the Second Proposition. For any point V on $\operatorname{Gr}(k, n)$, we have an isomorphism $T_V \operatorname{Gr}(k, n) \cong \operatorname{Hom}(V, W/V)$ by identifying a neighborhood of V with $\operatorname{Hom}(V, V')$. Check this is independent of the choice of V', so let V' = W/V, and glue together these open charts.

Second Proof of the First Proposition. It suffices to construct an s.e.s. of sheaves on $\mathbb{A}^{n+1} - \{0\}$ that is compatible with the G_m action. Let $\pi : \mathbb{A}^{n+1} - \{0\} \to \mathbb{P}^n$, and consider the s.e.s. $0 \to \pi^* \Omega_{\mathbb{P}^n} \to \Omega_{\mathbb{A}^{n+1}-\{0\}} \to \mathcal{O} \to 0$. See [Kem93] for more details.

Application Let $X \subseteq \mathbb{P}^n$ be a smooth hypersutrface of degree d = n+1, then $K_X \cong \mathcal{O}_X$ is trivial. (Proof: $K_X = K_{\mathbb{P}^m}(X)|_X = \mathcal{O}(-(n+1)+d)|_X$.)

Here are some examples of X:

- 1. n = 2, d = 3. This gives us the elliptic curves.
- 2. n = 3, d = 4. These are the K3 surfaces.
- 3. n = 2, d = any. We see that the degree of the canonical class is $deg(K_X) = deg(\mathcal{O}(-3+d)|_X) = d(d-3)$. Recall that complete smooth curves have genus as an invariant, such that $deg(K_X) = 2g - 2$, so we have g = d(d-3)/2 + 1.

Now let X be an affine variety, X = Hom(k[X], k). We can write the tangent bundle as $TX = \prod_{x} T_x X =$

Hom $(k[X], k[\varepsilon]/\varepsilon^2) = \text{Hom}(\text{Spec}(k[\varepsilon]/\varepsilon^2), X)$ where the first object, $\text{Spec}(k[\varepsilon]/\varepsilon^2)$, is a scheme rather than a variety. ¹ Each such homomorphism $h: k[X] \to k[\varepsilon]/\varepsilon^2$ is given by $f \mapsto h_0(f) + \varepsilon h_1(f)$, where $h_0: k[X] \to k$ is given by $h_0(f) = f(x)$ for some x, and $h_1: f \to k$ is a derivation where the target k is made a k[X]-module by evaluation at x, i.e. if $h_0(f) = f(x)$ then $h_1(fg) = f(x)h_1(g) + g(x)h_1(x)$.

Proposition 4. Let *E* be the exceptional locus over *x* when blowing up $X \ni x$. Then the cone of *E* is the same as $\operatorname{Spec}(\bigoplus_{n\geq 0} \mathfrak{m}_x^n/\mathfrak{m}_x^{n+1})_{\operatorname{red}}$, which we call the tangent cone. If we know that *x* is a smooth point, then $\bigoplus_{n\geq 0} \mathfrak{m}_x^n/\mathfrak{m}_x^{n+1}$ is given by $\operatorname{Sym}(T_x^*X)$.

$$\bigoplus_{n\geq 0} \mathfrak{m}_x^n/\mathfrak{m}_x^{n+1} \text{ is given by } \operatorname{Sym}(T_x^*$$

Proof. Let $A = k[x_1, \ldots, x_n]$, then it surjects to $\bigoplus_{n \ge 0} \mathfrak{m}_x^n / \mathfrak{m}_x^{n+1} = \operatorname{gr}_x(A)$ (the associated graded ring). So

Cone(*E*) and Spec($\operatorname{gr}_x(A)$) both sit above \mathbb{A}^n , so let's compare their associated ideals. We can do it on each of the affine coverings for $E \subset \mathbb{P}^{n-1}$, which has coordinates, say, $(\lambda, t_1, \ldots, t_n)$ (this is for \mathbb{A}^n_0) such that the map to \mathbb{A}^n is generated by $(\lambda, t_1, \ldots, t_n) \mapsto (\lambda, \lambda t_1, \ldots, \lambda t_n)$. The ideal of $E \cap \mathbb{A}^n_0$ is generated by polynomials $P(\lambda, \lambda t_1, \ldots, \lambda t_n)/\lambda^d$ evaluated at $\lambda = 0$ (where *d* is the highest degree of λ divisible by $P(\lambda, \lambda t_1, \ldots, \lambda t_n)$), where $P \in \mathscr{I}_X$. We need to compare those with ker($A \to \operatorname{gr}_x(A)$): invert x_1 and take the degree 0 part, we see the latter is generated by $\{P_d \mid P = P_d + P_{d+1} + \ldots \in \mathscr{I}_X\}$.

References

[Kem93] George Kempf. Algebraic varieties. Vol. 172. Cambridge University Press, 1993.

¹There was a question why $k[\varepsilon]/\varepsilon^2$ was called the *dual* number; answer: dual refers to the fact that there are *two parts* of each element.

MIT OpenCourseWare http://ocw.mit.edu

18.725 Algebraic Geometry Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.