Lecture 20: (Co)tangent Bundles of Grassmannians

Last time we proved that $X \subseteq \mathbb{A}^{n}$ is smooth at x if and only if locally given by equations f_{1}, \ldots, f_{m} such that $\left.d f_{i}\right|_{x}$ are linearly independent. We say that \mathscr{I}_{X} is locally generated by f_{1}, \ldots, f_{m}. In fact, any f_{1}, \ldots, f_{m} such that $\left.d f_{i}\right|_{x}$ is a basis for $\operatorname{ker}\left(T_{x}^{*} \mathbb{A}^{n} \rightarrow T_{x}^{*} X\right)$ would work. Take Z generated by the equations f_{1}, \ldots, f_{m}. We checked that $\operatorname{dim}_{x}(Z)=\operatorname{dim}_{x}(X)$.

Proposition 1. The following hold:

1. If $Z \subseteq X$ is a closed subvariety, then we have $\mathscr{I}_{Z} /\left.\mathscr{I}_{Z}^{2} \rightarrow \Omega_{X}\right|_{Z} \rightarrow \Omega_{Z} \rightarrow 0$.
2. If \mathscr{I}_{Z} is locally generated by functions with linearly independent differential (that is, for all x in Z, there exists $U \ni x, f_{1}, \ldots, f_{m}$ on U such that $\mathscr{I}_{Z \cap U}=\left(f_{1}, \ldots, f_{m}\right),\left.d f_{i}\right|_{y}$ is linearly independent for any $y \in U$), then the sequence is exact at left.
3. If X is smooth, the last condition can be checked at x. (Ω_{X} is locally linearly independent of $\left.d f_{i}\right|_{x}$ is an open condition.)

Proof. 1. $\left.\Omega_{X}\right|_{Z}$ surjects to Ω_{Z} by sending $f d g$ to $\left.\left.f\right|_{Z} d g\right|_{Z}$, and we claim that the kernel is generated by $f g, g \in \mathscr{I}_{Z}$. This would follow from $\operatorname{Der}\left(\mathcal{O}_{Z}, M\right)=\left\{\delta \in \operatorname{Der}\left(\mathcal{O}_{X}, M\right) \mid \delta\left(\mathscr{I}_{Z}\right)=0\right\}$, so it remains to see that $\left.f \mapsto d f\right|_{Z}$ is a well-defined map of $\mathcal{O}_{Z} \bmod \mathscr{I}_{Z} /\left.\mathscr{I}_{Z}^{2} \rightarrow \mathcal{O}_{X}\right|_{Z}$. Observe that $f,\left.g \in \mathscr{I}_{Z} \Longrightarrow d(f g)\right|_{Z}=0$.
2. If $\mathscr{I}_{Z}=\left(f_{1}, \ldots, f_{m}\right)$, we have the following diagram:

where the diagonal map is guaranteed to be injective on every fiber by condition b), so is injective.
3. We always have it for affine space \mathbb{A}^{n}. General case is proved similarly.

Corollary 1. X smooth, $Z \subseteq X$ closed, then Z is smooth if and only if locally Z is given by equation with linearly independent differentials.

Proof. Use proposition 3) above. Locally we assume $X \subseteq \mathbb{A}^{n}$, and then X is cut out by some g_{1}, \ldots, g_{p} with linearly independent differentials, so $\left(g_{1}, \ldots, g_{p}, \tilde{f}_{1}, \ldots, \tilde{f}_{n}\right)$ are equations for Z with linearly independent differentials, so Z is smooth.

Last time we defined ω, the canonical bundle. Let K be the corresponding canonical divisor class.
Corollary 2. If X, Z smooth, Z closed in X, then we get a s.e.s. of locally free sheaves $0 \rightarrow \mathscr{I}_{Z} / \mathscr{I}_{Z}^{2}=$ $\left.T_{Z}^{*} X \rightarrow \Omega_{X}\right|_{Z} \rightarrow \Omega_{Z} \rightarrow 0$, and thus $\left.K\right|_{Z}=K_{Z} \omega\left(\mathscr{I}_{Z} / \mathscr{I}_{Z}^{2}\right)$. If Z is a divisor, then $\omega\left(\mathscr{I}_{Z} / \mathscr{I}_{Z}^{2}\right)=\mathscr{I}_{Z} / \mathscr{I}_{Z}^{2}=$ $\left.\mathcal{O}(-D)\right|_{Z}$, thus $\left.K_{X}(D)\right|_{D}=K_{D}$, which is the adjunction formula.

Remark 1. Sections of $K_{X}(D)$ are top degree forms on X with poles of order ≤ 1 on D. The map $\left.K_{X}(D)\right|_{D} \rightarrow K_{D}$ sends ω to its residue.

Proposition 2. We have a s.e.s. $0 \rightarrow \Omega_{\mathbb{P}^{n}} \rightarrow \mathcal{O}(-1)^{\oplus(n+1)}=\mathcal{O}(-1) \otimes V^{*} \rightarrow \mathcal{O} \rightarrow 0$ where $\mathbb{P} V=\mathbb{P}^{n}$. As a corollary, $K_{\mathbb{P}} n=\mathcal{O}(-(n+1))$.

More generally, consider the Grassmannian $\operatorname{Gr}(k, n)$, consisting of all k-dimensional linear subspaces V of an n-dimensional space W. Then $\mathcal{O}_{\operatorname{Gr}(k, n)}^{\oplus n}$ has a locally free tautological subsheaf \mathcal{V} of rank k (that is locally a direct summand) such that a section s of $\mathcal{O} \otimes W$, i.e. a map $s: G r(k, n) \rightarrow W$, belongs to \mathcal{V} if for all $x, s(x) \subseteq \mathcal{V}_{x}$.

Proposition 3. $T_{G r(k, n)}=\operatorname{Hom}(\mathcal{V}, W \otimes \mathcal{O} / \mathcal{V})$ and $\Omega_{G r(k, n)}=\operatorname{Hom}(W \otimes \mathcal{O} / \mathcal{V}, \mathcal{V})$.
Let's see how this implies the last proposition: let $k=1, \mathcal{V}=\mathcal{O}(-1)$. Then $\operatorname{Hom}\left(\mathcal{O}(-1), \frac{\mathcal{O}^{\oplus(n+1)}}{\mathcal{O}(-1)}\right)=$ $\frac{\operatorname{Hom}\left(\mathcal{O}(-1), \mathcal{O}^{\oplus(n+1)}\right)}{\operatorname{Hom}(\mathcal{O}(-1), \mathcal{O}(-1))}=\frac{\mathcal{O}(1)^{\oplus(n+1)}}{\mathcal{O}}$ and $\Omega=\operatorname{ker}\left(\mathcal{O}(-1)^{n+1}, \mathcal{O}\right)$.
Proof of the Second Proposition. For any point V on $\operatorname{Gr}(k, n)$, we have an isomorphism $T_{V} \operatorname{Gr}(k, n) \cong$ $\operatorname{Hom}(V, W / V)$ by identifying a neighborhood of V with $\operatorname{Hom}\left(V, V^{\prime}\right)$. Check this is independent of the choice of V^{\prime}, so let $V^{\prime}=W / V$, and glue together these open charts.
Second Proof of the First Proposition. It suffices to construct an s.e.s. of sheaves on $\mathbb{A}^{n+1}-\{0\}$ that is compatible with the G_{m} action. Let $\pi: \mathbb{A}^{n+1}-\{0\} \rightarrow \mathbb{P}^{n}$, and consider the s.e.s. $0 \rightarrow \pi^{*} \Omega_{\mathbb{P}^{n}} \rightarrow \Omega_{\mathbb{A}^{n+1}-\{0\}} \rightarrow$ $\mathcal{O} \rightarrow 0$. See [Kem93] for more details.

Application Let $X \subseteq \mathbb{P}^{n}$ be a smooth hypersutrface of degree $d=n+1$, then $K_{X} \cong \mathcal{O}_{X}$ is trivial. (Proof: $\left.K_{X}=\left.K_{\mathbb{P}}(X)\right|_{X}=\mathcal{O}(-(n+1)+d) \mid{ }_{X}.\right)$

Here are some examples of X :

1. $n=2, d=3$. This gives us the elliptic curves.
2. $n=3, d=4$. These are the K3 surfaces.
3. $n=2, d=$ any. We see that the degree of the canonical class is $\operatorname{deg}\left(K_{X}\right)=\operatorname{deg}\left(\left.\mathcal{O}(-3+d)\right|_{X}\right)=d(d-3)$. Recall that complete smooth curves have genus as an invariant, such that $\operatorname{deg}\left(K_{X}\right)=2 g-2$, so we have $g=d(d-3) / 2+1$.

Now let X be an affine variety, $X=\operatorname{Hom}(k[X], k)$. We can write the tangent bundle as $T X=\coprod_{x \in X} T_{x} X=$ $\operatorname{Hom}\left(k[X], k[\varepsilon] / \varepsilon^{2}\right)=\operatorname{Hom}\left(\operatorname{Spec}\left(k[\varepsilon] / \varepsilon^{2}\right), X\right)$ where the first object, $\operatorname{Spec}\left(k[\varepsilon] / \varepsilon^{2}\right)$, is a scheme rather than a variety. ${ }^{1}$ Each such homomorphism $h: k[X] \rightarrow k[\varepsilon] / \varepsilon^{2}$ is given by $f \mapsto h_{0}(f)+\varepsilon h_{1}(f)$, where $h_{0}: k[X] \rightarrow k$ is given by $h_{0}(f)=f(x)$ for some x, and $h_{1}: f \rightarrow k$ is a derivation where the target k is made a $k[X]$-module by evaluation at x, i.e. if $h_{0}(f)=f(x)$ then $h_{1}(f g)=f(x) h_{1}(g)+g(x) h_{1}(x)$.
Proposition 4. Let E be the exceptional locus over x when blowing up $X \ni x$. Then the cone of E is the same as $\operatorname{Spec}\left(\bigoplus_{n \geq 0} \mathfrak{m}_{x}^{n} / \mathfrak{m}_{x}^{n+1}\right)_{\text {red }}$, which we call the tangent cone. If we know that x is a smooth point, then $\bigoplus_{n \geq 0} \mathfrak{m}_{x}^{n} / \mathfrak{m}_{x}^{n+1}$ is given by $\operatorname{Sym}\left(T_{x}^{*} X\right)$.

Proof. Let $A=k\left[x_{1}, \ldots, x_{n}\right]$, then it surjects to $\bigoplus_{n \geq 0} \mathfrak{m}_{x}^{n} / \mathfrak{m}_{x}^{n+1}=\operatorname{gr}_{x}(A)$ (the associated graded ring). So $\operatorname{Cone}(E)$ and $\operatorname{Spec}\left(\operatorname{gr}_{x}(A)\right)$ both sit above \mathbb{A}^{n}, so let's compare their associated ideals. We can do it on each of the affine coverings for $E \subset \mathbb{P}^{n-1}$, which has coordinates, say, ($\lambda, t_{1}, \ldots, t_{n}$) (this is for \mathbb{A}_{0}^{n}) such that the map to \mathbb{A}^{n} is generated by $\left(\lambda, t_{1}, \ldots, t_{n}\right) \mapsto\left(\lambda, \lambda t_{1}, \ldots, \lambda t_{n}\right)$. The ideal of $E \cap \mathbb{A}_{0}^{n}$ is generated by polynomials $P\left(\lambda, \lambda t_{1}, \ldots, \lambda t_{n}\right) / \lambda^{d}$ evaluated at $\lambda=0$ (where d is the highest degree of λ divisible by $P\left(\lambda, \lambda t_{1}, \ldots, \lambda t_{n}\right)$), where $P \in \mathscr{I}_{X}$. We need to compare those with $\operatorname{ker}\left(A \rightarrow \operatorname{gr}_{x}(A)\right)$: invert x_{1} and take the degree 0 part, we see the latter is generated by $\left\{P_{d} \mid P=P_{d}+P_{d+1}+\ldots \in \mathscr{I}_{X}\right\}$.

References

[Kem93] George Kempf. Algebraic varieties. Vol. 172. Cambridge University Press, 1993.

[^0]MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ There was a question why $k[\varepsilon] / \varepsilon^{2}$ was called the dual number; answer: dual refers to the fact that there are two parts of each element.

