Lecture 19: Smoothness, Canonical Bundles, the Adjunction Formula

Last time we defined $\Omega_{X}, T_{x} X$ and smoothness. We proved that any X contains an open dense smooth subset, that X is smooth at x if and only if Ω_{X} is locally free around x, and X is smooth if and only if Ω_{X} is locally free.

Here's a trivial observation: suppose we have a surjection $f: A \rightarrow B$ and $\mathfrak{m}_{B} \in B$ an maximal ideal, let $\mathfrak{m}_{A}=f^{-1} \mathfrak{m}_{B}$, then $\mathfrak{m}_{B} / \mathfrak{m}_{B}^{2}=\mathfrak{m}_{A} / \mathfrak{m}_{A}^{2}+I$ where $I=\operatorname{ker}(f)$. If $Y=\operatorname{Spec} B$ contains $X=\operatorname{Spec} A$, $y \in X \subseteq Y$, then $T_{y}^{*} Y=T_{y}^{*} X /\left(d f_{i}\right)$, where f_{i} are generators of I.

Corollary 1. We have the following:

1. If $X \subseteq \mathbb{A}^{n}$ is a hypersurface given by the equation $I_{X}=(P)$, then $x \in X$ is smooth if and only if $\left.d P\right|_{x} \in T_{x}^{*} \mathbb{A}^{n} \neq 0$, i.e. $\left.\frac{\partial P}{\partial x_{i}}\right|_{x} \neq 0$ for some i.
2. Suppose $X \subseteq \mathbb{A}^{n}$ has dimension $n-m$ where $I_{X}=\left(f_{1}, \ldots, f_{m}\right)$ (this is not true for all X), then X is smooth at a point x if and only if $\left.d f_{i}\right|_{x} \in T_{x}^{*} \mathbb{A}^{n}=k^{n}$ are linearly independent, i.e. the m-by-m matrix $\left(\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{x}\right)$ has rank m.

Proof. The first claim is a particular case of the second. $\operatorname{dim}(X) \geq \operatorname{dim}_{x} X \geq n-m \Longrightarrow \operatorname{dim}_{x} X=n-m$. Now apply the definition of smoothness, and that $T_{x}^{*} X=T^{*} \mathbb{A}^{n} /\left(\left.d f_{i}\right|_{x}\right)$.

If $X \subseteq \mathbb{P}^{m}$ has dimension $n-m, I_{X}=\left(F_{1}, \ldots, F_{m}\right)$ for homogeneous polynomials, then $x=\left(x_{0}, \ldots, x_{n}\right)$ is a smooth point if and only if $\left(\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{x}\right)$ has rank m. To see this, note that X is smooth at x if and only if C_{X} (the cone) is smooth at \tilde{x} because C_{X} is locally isomorphic to $X \times \mathbb{A}^{1}$, and note that $T_{(x, y)}^{*}(X \times Y)=$ $T_{x}^{*} X \oplus T_{y}^{*} Y$.

Proposition 1. Suppose $X \subseteq \mathbb{A}^{n}, x \in X$ is a smooth point if and only if $\exists f_{1}, \ldots f_{m} \in I_{X} \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ which locally generate I_{X} and $\left.d f_{i}\right|_{x}$ are linearly independent.

Proof. If f_{1}, \ldots, f_{n} as above exists, then $\operatorname{dim}\left(T_{x}^{*} X\right)=n-m$ while $\operatorname{dim}_{x} X \geq n-m$ also $\operatorname{dim}_{x} X \leq$ $\left(\operatorname{dim} T_{x}^{*} X\right) \Longrightarrow \operatorname{dim}_{x} X=\operatorname{dim} T_{x}^{*} X$ i.e. x is a smooth point. Conversely, suppose X is smooth at x, pick $f_{1}, \ldots, f_{m} \in I_{X}$ such that $\left.f_{i}\right|_{x}$ form a basis in $\operatorname{ker}\left(T_{x}^{*} \mathbb{A}^{n} \rightarrow T_{x}^{*} X\right)$. Then by the first part of the proof, $Z=\left(f_{1}, \ldots, f_{m}\right)$ is smooth at x with $\operatorname{dim}_{x} Z=n-m=\operatorname{dim}_{x} X$, where $Z \supseteq X$. So we are done if we know that Z is locally irreducible, which follows from the next lemma:

Lemma 1. $\widehat{\mathcal{O}_{Z, x}}=\underset{{ }_{n}}{\lim } k[Z] / \mathfrak{m}_{x}^{n} \cong k\left[\left[t_{1}, \ldots, t_{n-m}\right]\right]$ (i.e. is a free ring).
Why does this imply Z locally irreducible? Z locally irreducible means $\mathcal{O}_{Z, x}$ has no zero divisors, which would follow from the fact that $\mathcal{O}_{Z, x} \subseteq \widehat{\mathcal{O}_{Z, x}}$ which follows from Nakayama. In particular, $\operatorname{ker}\left(\mathcal{O}_{Z, x} \rightarrow\right.$ $\left.\widehat{\mathcal{O}_{Z, x}}\right)=\bigcap_{n} \mathfrak{m}_{x}^{n}$ which is a finitely generated ideal $\mathcal{O}_{Z, x}$ is Noetherian, and we have $\mathfrak{m}_{x} I=I \Longrightarrow I=0$.
Remark 1. This lemma is equivalent to that $\bigoplus_{n} \mathfrak{m}_{x}^{n} / \mathfrak{m}_{x}^{n+1}$ (the associated graded ring) is isomorphic to $k\left[t_{1}, \ldots, t_{n}\right]$. The general case is given in the next lemma.
Lemma 2. Let A be a ring, \mathfrak{m} a maximal ideal, $a \in A$. Suppose $a \in \mathfrak{m}^{p}$, write $\bar{a} \in \bar{A}_{p}=\mathfrak{m}^{p} / \mathfrak{m}^{p+1}$ and $\bar{A}=\bigoplus_{n} \mathfrak{m}^{n} / \mathfrak{m}^{n+1}$. Then $\overline{A /(a)}=\bigoplus(A / a)^{n} /(A / a)^{n+1}=\bar{A} /(\bar{a})$ if \bar{a} is not a zero divisor.

Proof. $(\overline{A /(a)})_{n}=\mathfrak{m}^{n} /\left(\mathfrak{m}^{n+1}+\left(a A \cap \mathfrak{m}^{n}\right)\right), \bar{A} /(\bar{a})=\mathfrak{m}^{n} / \mathfrak{m}^{n+1}+a \mathfrak{m}^{n-p}$. For any $x \in \mathfrak{m}^{k}$, we have $a x \in \mathfrak{m}^{k+p} ;$ if \bar{a} is not a zero divisor, then $x \notin \mathfrak{m}^{k+1}$, then $a x \notin \mathfrak{m}^{k+p+1}$.

Now we return to the first lemma. f_{1}, \ldots, f_{n} have linearly independent differential at x, by induction check $k\left[x_{1}, \ldots, \widehat{\left.x_{n}\right] /(}\left(f_{1}, \ldots, f_{i}\right)=k\left[\left[t_{1}, \ldots, t_{n-1}\right]\right]\right.$, i.e. $\operatorname{gr}\left(k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{i}\right)\right) \cong k\left[t_{1}, \ldots, t_{n-1}\right]$, and if so, wlog can assume $\overline{f_{i+1}}=t_{1}$.
Proposition 2. X is smooth at x iff $\widehat{\mathcal{O}_{X, x}} \cong k\left[\left[t_{1}, \ldots, t_{d}\right]\right]$ where $d=\operatorname{dim}_{x} X$.
Proof. The forward direction follows from the proof of the previous proposition where we deduced this from the fact that X is locally given by equations with independent differentials. For the other direction, assume $\widehat{O}_{X, x} \cong k\left[\left[t_{1}, \ldots, t_{d}\right]\right]$ then we want to conclude $d=\operatorname{dim} T_{x}^{*} X$. It suffices to check that $\operatorname{dim}_{x} X \geq d$. Pick $f_{1}, \ldots, f_{d} \in \mathfrak{m}_{x}$ with linearly independent differentials, and we claim that $\left(f_{1}, \ldots, f_{d}\right)$ is a regular sequence, i.e. f_{i+1} is not a zero divisor in $\mathcal{O}_{X, x} /\left(f_{1}, \ldots, f_{i}\right)$. Then $f_{i+1} \neq 0$ on each component of $Z_{f_{1}, \ldots, f_{i}}$ passing through x, so we get $X \supsetneq Z_{1} \supsetneq Z_{2} \ldots \supsetneq Z_{d} \ni x$, where Z_{i} is a component in $Z_{f_{1}, \ldots, f_{i}}$. Why is it a regular sequence? because $\left.\mathcal{O}_{X, x} \widehat{\left(f_{1}, \ldots\right.}, f_{i}\right) \cong k\left[\left[t_{1}, \ldots, t_{m-i}\right]\right] \supseteq \mathcal{O}_{X, x} /\left(f_{1}, \ldots, f_{i}\right)$ (check by induction).

This concludes the proof of the proposition.
Proposition 3. Suppose $Z \subseteq X$ is a closed subvariety.

1. We have an exact sequence $\mathscr{I}_{Z} / \mathscr{I}_{Z}^{2}=\left.\left.\mathscr{I}_{Z}\right|_{Z} \rightarrow \Omega_{X}\right|_{Z} \rightarrow \Omega_{Z} \rightarrow 0\left(\right.$ recall $\left.\mathscr{F}\right|_{Z}=\mathcal{O}_{Z} \otimes_{\mathcal{O}_{X}} \mathscr{F}=\mathscr{F} / \mathscr{I}_{Z} \mathscr{F}$ allows us to identify a sheaf \mathscr{F} on Z with $\left.i_{*} \mathscr{F}\right)$.
2. If for all $x \in Z, \mathscr{I}_{Z}$ is locally (around x) generated by f_{1}, \ldots, f_{m} such that $\left.d f_{i}\right|_{x}$ are linearly independent at x, then the sequence is short exact, and $\mathscr{I}_{Z} / \mathscr{I}_{Z}^{2}$ is a locally free sheaf of rank m where m is the codimension.

In the situation of (2), $\mathscr{I}_{Z} / \mathscr{I}_{Z}^{2}$ is called the conormal bundle.
Example 1. X, Z are smooth irreducible, $\operatorname{dim}(Z)=\operatorname{dim}(X)-1, Z=D$ is a divisor, $\mathscr{I}_{Z}=\mathcal{O}(-D)$ is an invertible sheaf. A local section of it is a function vanishing on Z. We can send f to a 1-form df vanishing on D, and it defines a section of the conormal bundle.

Definition 1. If X is a smooth irreducible variety of dimension d, then $\Omega(X)$ is a locally free sheaf of rank d. Then the top exterior power $\omega(X)=\bigwedge^{d} \Omega(X)$ is a locally free sheaf of rank 1 . We call it the canonical line bundle or the canonical sheaf ("canonical" because any smooth variety gets it for free).

If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence of locally free sheaves, then we have

$$
\bigwedge^{t o p}(B)=\bigwedge^{t o p}(C) \otimes \bigwedge^{t o p}(A)
$$

Corollary 2 (Adjunction Formula). $\omega_{D}=\left.\omega_{X}(-D)\right|_{D}$.
One last comment: the graded algebra has a nice geometric property as follows:
Definition 2. $\operatorname{Spec}\left(\operatorname{gr}\left(\mathcal{O}_{X, x}\right)\right)$ is called the tangent cone to X at x.
Proposition 4. The tangent cone is the cone over the exceptional locus in the blowup at x.

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

