Lecture 17: Abel-Jacobi Map, Elliptic Curves

Few more remarks on the analytics theory. Last time we let X be a smooth compact \mathbb{C}-manifold of dimension 1 , obtained from a normal, complete curve over \mathbb{C}. (In fact, any smooth compact \mathbb{C}-manifold of dimension 1 is obtained from an algebraic curve; note that this fails for dimension $\geq 2)$. In this case, $\operatorname{Pic}^{\circ}(X)=$ $\operatorname{Div}(X) / \operatorname{PDiv}(X)$. We remarked that we have a map from it to $\Gamma\left(\Omega^{1}(X)\right)^{*} / H_{1}(X, \mathbb{Z})=\mathbb{C}^{g} / \mathbb{Z}^{2 g}$ (the AbelJacobi map).

Theorem 1.1. X can be reconstructed from the lattice $H_{1}(X, \mathbb{Z}) \subseteq \Gamma\left(\Omega^{1}\right)^{*}$.
This can be generalized to smooth complete varieties in any dimension. Instead of degree, we consider a map Div $\rightarrow H_{n-2}(X)$, and principal divisors are the preimages of 0 . There is another $\operatorname{Pic}(X) \rightarrow H_{n-2}(X)$ with kernel $\operatorname{Pic}^{\circ}(X)$, and the theorem reads $\operatorname{Pic}^{\circ}(X)=\Gamma\left(\Omega^{n-1}(X)\right)^{*} / H_{1}(X, \mathbb{Z})$.

Proposition 1. $\operatorname{Pic}^{\circ}(X)$ is itself a complex variety as well as a compact abelian Lie group. In fact, one can define an algebraic group $\operatorname{Jac}(X)$ on it, such that for a curve X, the $A-J$ map is algebraic.

To formally define the Jacobian, one defines a functor it represents. More explicitly, for a variety S, one define a family of invertible sheaves of X parametrized by S, which is essentially an invertible sheaf on $S \times X$, modulo the line bundles pulled back from S.

Theorem 1.2. Let g be the (geometric) genus of X and assume it equals 1 . Then $\mathbb{C}^{g} / \mathbb{Z}^{2 g}=\mathbb{C} / \mathbb{Z}^{2}$ has dimension 1 and is therefore a curve. Fix $x_{0} \in X$. The $A-J$ map gives a map $X \rightarrow \operatorname{Pic}^{\circ}(X)$, where we send x to $x-x_{0}$. Then this is an isomorphism.

Corollary 1. Every normal curve of genus 1 has a group structure (they are called the elliptic curves).
As an example, consider $X \subseteq \mathbb{P}^{2}$ is the projective closure $y^{2}=P(x)=x^{3}+a x+b($ char $k \neq 2,3)$ (and assume no multiple roots). We'll check today that X is a smooth curve by showing it's normal and irreducible.

Assume $k=\mathbb{C}$, we claim that $g=1$, i.e. the topological Euler character is 0 . Consider the map $(x, y) \mapsto x$, which extends to a morphism $X \rightarrow \mathbb{P}^{1}$. This is of degree 2 and has four ramification points: the roots of $P(x)$ as well as the infinity. Thinking in classical topology and choose your favorite argument, we know that $\operatorname{Eul}(X)=2 \operatorname{Eul}\left(\mathbb{C P}^{1}\right)-4=0$.

Now let's consider how to write down the composition (group) law. To do so, we first fix the initial point $x_{0}=(0: 1: 0)$, where we see that $\left\{x_{0}\right\}=X \cap \mathbb{P}_{\infty}^{1}$. The complex story suggests that we have a group law on X, such that for every $x, y \in X$, we have the divisor equivalence $\left(x+_{E} y\right)-x_{0} \sim\left(x-x_{0}\right)+\left(y-x_{0}\right)$ (where $+_{E}$ denotes the addition using the group law), in other words, $\left(x+_{E} y\right)-x-y \sim-x_{0}$. We know that for every two lines $l, l^{\prime}=\mathbb{P}^{1} \subseteq \mathbb{P}^{2}$ we have $(l \cap X) \sim\left(l^{\prime} \cap X\right)$ (we discussed this before). Now take $l^{\prime}=\mathbb{P}_{\infty}^{1}$, then $\left(l^{\prime} \cap X\right)=3 x_{0}$. Write $l \cap X=x_{1}+x_{2}+x_{3}$, then $\left(x_{1}-x_{0}\right)+\left(x_{2}-x_{0}\right)+\left(x_{3}-x_{0}\right) \sim 0$ in $\operatorname{Pic}(X)$. So we should expect $x_{1}+_{E} x_{2}+_{E} x_{3}=0$. Now we construct the group law. For $x=(a, b) \subseteq X, x^{\prime}=(a,-b)$, we have $x+x^{\prime}+x_{0} \sim 3 x_{0} \in$ Pic, so we define $x+{ }_{E} x^{\prime}=0$. Now in general, define $x+E y$ to be the 3 rd point in $l \cap X$, where l passes through x^{\prime} and y^{\prime}. One can directly check that this is a group law that makes X an abelian algebraic group.

Remark 1. Over $\mathbb{C}, X=\mathbb{C} / \mathbb{Z}^{2}$ makes it clear that for all $N>0$ we have $\{x \in X \mid N x=0\} \cong(\mathbb{Z} / N \mathbb{Z})^{2}$. This can be checked algebraically to hold for k of characteristic $p \nmid N$. If $N=p$, then this group is \mathbb{Z} / p, or trivial if X is respectively ordinary or supersingular.

Consider $X_{0} \subseteq \mathbb{A}^{2}$ given by $\left\{(x, y) \mid y^{2}=P(x)\right\}$. If $X_{0}-\{z\}$ is affine, then it corresponds to $k\left[X_{0}\right]_{(f)}$ where f is a function in $k\left[X_{0}\right]$ such that $f(x)=0 \Leftrightarrow x=z$, which is iff $(f)=N z-N x_{0}$ for some N (where x_{0} is the group law identity, which is the infinite point). For a given N there are $N^{2}-1$ such z.

Last time we proved that if X is normal irreducible complete curve, $f \in K(X)$, then it defines some $f: X \rightarrow \mathbb{P}^{1}$, then the divisor (f) is $\left(f_{0}\right)-\left(f_{\infty}\right)$ where $\operatorname{deg}\left(f_{0}\right)=\operatorname{deg}\left(f_{\infty}\right)=\operatorname{deg}(f)$. We proved this modulo the following proposition, which we shall prove today:

Proposition 2. A non-constant map between irreducible compact curves is finite.

Normalization Let X be an irreducible variety, $F=K(X)$ be the field of rational functions on X. Let E / F be a (finite) field extension. Then build a new variety as follows:

Proposition 3. There exists a variety Y along with a finite map $f: Y \rightarrow X$ such that for every affine open $U \subseteq X, k\left[f^{-1}(U)\right]=\overline{k[U]}_{E}$ (the integral closure).

If $E=F$, then Y is called a renormalization of X. In fact, Y is the unique normal variety with a finite onto map to X with the fractional field being $E . \overline{k[U]}_{E}$ is finitely generated as a $k[U]$-module, or equivalently, as a ring. In other words $k[U]$ is a Nagata ring. Sketch of proof to this: using Noether normalization reduce to $X=\mathbb{A}^{n}$. Consider separately the case of purely inseparable and the separable extensions. For separable extension case, the bilinear form $(x, y) \mapsto \operatorname{Tr}(x y)$ on E as an F-vector space is not degenerate, so if we pick a basis $\left(y_{i}\right)$ for E / F which lies in ${\overline{k\left[x_{1}, \ldots, x_{n}\right]}}_{E}$, then ${\overline{k\left[x_{1}, \ldots, x_{n}\right]}}_{\underline{E}}^{\subseteq}\left\{e \in E \mid \operatorname{Tr}\left(e x_{i}\right) \in A\right\}$ is a finitely generated algebra for $A=k\left[x_{1}, \ldots, x_{n}\right]$. Now the assignment $U \mapsto \overline{k[U]_{E}}$ extends to a coherent sheaf A of rings on X, and let $Y=\operatorname{Spec}_{X}(A)$.

Corollary 2. Given $f: X \rightarrow Y$ where X, Y are irreducible, if X is normal, f is finite, onto, then X can be reconstructed from Y and $f^{-1}(U)$ for some open $U \neq \emptyset \subseteq Y$.

Example 1. Let $X=V\left(x^{3}-y^{2}\right)$, then the normalization of X is \mathbb{A}^{1}, and the map is $t \mapsto\left(t^{2}, t^{3}\right)$.
Lemma 1. If $f: X \rightarrow Y$ is a map of irreducible curves, suppose f is onto, birational, Y is normal, then f is an isomorphism.

Proof. Let $\varphi \in K(Y), \varphi$ on $f^{-1}(U) \Leftrightarrow \varphi$ is regular on U. If φ is not, φ^{-1} is regular and is 0 at some $x \in U$. Suppose $y \mapsto x$, then φ is not regular at y.

Lemma 2. Suppose $X \rightarrow Y$ is birational map, X is complete, Y is normal, then $X \cong Y$ iso.
Proof. Since $f(X)$ is closed and not finite, we know f must be onto.
Proof of Proposition 2. $X \rightarrow Y$ is a map of complete curves. We can assume X is normal. Then it factors through normalization $X \rightarrow \operatorname{Nor}(Y) \rightarrow Y$. The first is isomorphism by assumption, and the second map is finite by construction.

Tangent Space Now let X be an algebraic variety, $x \in X$. Let us define the Zariski tangent space $T_{x} X$. We first we note the tangent space to a smooth manifold is the fiber of the bundle of vector fields $\operatorname{Vect}(M)=\operatorname{Der}\left(\mathcal{C}^{\infty}(M)\right)$. Each vector field v gives a linear map $\delta_{v}: \operatorname{Fun}(M) \rightarrow \mathbb{C}$ that maps f to $\left.v \cdot f\right|_{x}$, so we see that $\delta_{v}(f g)=f(x) \delta_{v}(g)+g(x) \delta_{v}(f)$. This suggests the definition $T_{x} X \subseteq \operatorname{Hom}_{k}\left(\mathcal{O}_{X, x}, k\right)$ given by $\{\xi \mid \xi(f g)=f(x) \xi(g)+g(x) \xi(f)\}$. The cotangent space $T_{x}^{*} X$ is the dual $\left(T_{x} X\right)^{*}$, and we can describe it as $\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$. In particular, for $X=\operatorname{Spec}(A), \operatorname{Vect}(X)=\operatorname{Der}(A)=\{\delta: A \rightarrow A k$-linear $\mid \delta(f g)=\delta(f)(g)+f \delta(g)\}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

