Lecture 17: Abel-Jacobi Map, Elliptic Curves

Few more remarks on the analytics theory. Last time we let X be a smooth compact \mathbb{C} -manifold of dimension 1, obtained from a normal, complete curve over \mathbb{C} . (In fact, any smooth compact \mathbb{C} -manifold of dimension 1 is obtained from an algebraic curve; note that this fails for dimension ≥ 2). In this case, $\operatorname{Pic}^{\circ}(X) = \operatorname{Div}(X)/\operatorname{PDiv}(X)$. We remarked that we have a map from it to $\Gamma(\Omega^1(X))^*/H_1(X,\mathbb{Z}) = \mathbb{C}^g/\mathbb{Z}^{2g}$ (the Abel-Jacobi map).

Theorem 1.1. X can be reconstructed from the lattice $H_1(X,\mathbb{Z}) \subseteq \Gamma(\Omega^1)^*$.

This can be generalized to smooth complete varieties in any dimension. Instead of degree, we consider a map $\text{Div} \to H_{n-2}(X)$, and principal divisors are the preimages of 0. There is another $\text{Pic}(X) \to H_{n-2}(X)$ with kernel $\text{Pic}^{\circ}(X)$, and the theorem reads $\text{Pic}^{\circ}(X) = \Gamma(\Omega^{n-1}(X))^*/H_1(X,\mathbb{Z})$.

Proposition 1. $\operatorname{Pic}^{\circ}(X)$ is itself a complex variety as well as a compact abelian Lie group. In fact, one can define an algebraic group $\operatorname{Jac}(X)$ on it, such that for a curve X, the A-J map is algebraic.

To formally define the Jacobian, one defines a functor it represents. More explicitly, for a variety S, one define a family of invertible sheaves of X parametrized by S, which is essentially an invertible sheaf on $S \times X$, modulo the line bundles pulled back from S.

Theorem 1.2. Let g be the (geometric) genus of X and assume it equals 1. Then $\mathbb{C}^g/\mathbb{Z}^{2g} = \mathbb{C}/\mathbb{Z}^2$ has dimension 1 and is therefore a curve. Fix $x_0 \in X$. The A-J map gives a map $X \to \operatorname{Pic}^\circ(X)$, where we send x to $x - x_0$. Then this is an isomorphism.

Corollary 1. Every normal curve of genus 1 has a group structure (they are called the elliptic curves).

As an example, consider $X \subseteq \mathbb{P}^2$ is the projective closure $y^2 = P(x) = x^3 + ax + b$ (char $k \neq 2, 3$) (and assume no multiple roots). We'll check today that X is a smooth curve by showing it's normal and irreducible.

Assume $k = \mathbb{C}$, we claim that g = 1, i.e. the topological Euler character is 0. Consider the map $(x, y) \mapsto x$, which extends to a morphism $X \to \mathbb{P}^1$. This is of degree 2 and has four ramification points: the roots of P(x) as well as the infinity. Thinking in classical topology and choose your favorite argument, we know that $\operatorname{Eul}(X) = 2\operatorname{Eul}(\mathbb{CP}^1) - 4 = 0$.

Now let's consider how to write down the composition (group) law. To do so, we first fix the initial point $x_0 = (0:1:0)$, where we see that $\{x_0\} = X \cap \mathbb{P}^1_{\infty}$. The complex story suggests that we have a group law on X, such that for every $x, y \in X$, we have the divisor equivalence $(x + Ey) - x_0 \sim (x - x_0) + (y - x_0)$ (where $+_E$ denotes the addition using the group law), in other words, $(x + Ey) - x - y \sim -x_0$. We know that for every two lines $l, l' = \mathbb{P}^1 \subseteq \mathbb{P}^2$ we have $(l \cap X) \sim (l' \cap X)$ (we discussed this before). Now take $l' = \mathbb{P}^1_{\infty}$, then $(l' \cap X) = 3x_0$. Write $l \cap X = x_1 + x_2 + x_3$, then $(x_1 - x_0) + (x_2 - x_0) + (x_3 - x_0) \sim 0$ in Pic(X). So we should expect $x_1 + Ex_2 + Ex_3 = 0$. Now we construct the group law. For $x = (a, b) \subseteq X$, x' = (a, -b), we have $x + x' + x_0 \sim 3x_0 \in \text{Pic}$, so we define x + Ex' = 0. Now in general, define x + Ey to be the 3rd point in $l \cap X$, where l passes through x' and y'. One can directly check that this is a group law that makes X an abelian algebraic group.

Remark 1. Over \mathbb{C} , $X = \mathbb{C}/\mathbb{Z}^2$ makes it clear that for all N > 0 we have $\{x \in X \mid Nx = 0\} \cong (\mathbb{Z}/N\mathbb{Z})^2$. This can be checked algebraically to hold for k of characteristic $p \nmid N$. If N = p, then this group is \mathbb{Z}/p , or trivial if X is respectively ordinary or supersingular.

Consider $X_0 \subseteq \mathbb{A}^2$ given by $\{(x, y) \mid y^2 = P(x)\}$. If $X_0 - \{z\}$ is affine, then it corresponds to $k[X_0]_{(f)}$ where f is a function in $k[X_0]$ such that $f(x) = 0 \Leftrightarrow x = z$, which is iff $(f) = Nz - Nx_0$ for some N (where x_0 is the group law identity, which is the infinite point). For a given N there are $N^2 - 1$ such z.

Last time we proved that if X is normal irreducible complete curve, $f \in K(X)$, then it defines some $f: X \to \mathbb{P}^1$, then the divisor (f) is $(f_0) - (f_\infty)$ where $\deg(f_0) = \deg(f_\infty) = \deg(f)$. We proved this modulo the following proposition, which we shall prove today:

Proposition 2. A non-constant map between irreducible compact curves is finite.

Normalization Let X be an irreducible variety, F = K(X) be the field of rational functions on X. Let E/F be a (finite) field extension. Then build a new variety as follows:

Proposition 3. There exists a variety Y along with a finite map $f: Y \to X$ such that for every affine open $U \subseteq X$, $k[f^{-1}(U)] = \overline{k[U]}_E$ (the integral closure).

If E = F, then Y is called a renormalization of X. In fact, Y is the unique normal variety with a finite onto map to X with the fractional field being E. $\overline{k[U]}_E$ is finitely generated as a k[U]-module, or equivalently, as a ring. In other words k[U] is a Nagata ring. Sketch of proof to this: using Noether normalization reduce to $X = \mathbb{A}^n$. Consider separately the case of purely inseparable and the separable extensions. For separable extension case, the bilinear form $(x, y) \mapsto \operatorname{Tr}(xy)$ on E as an F-vector space is not degenerate, so if we pick a basis (y_i) for E/F which lies in $\overline{k[x_1, \ldots, x_n]_E}$, then $\overline{k[x_1, \ldots, x_n]_E} \subseteq \{e \in E \mid \operatorname{Tr}(ex_i) \in A\}$ is a finitely generated algebra for $A = k[x_1, \ldots, x_n]$. Now the assignment $U \mapsto \overline{k[U]}_E$ extends to a coherent sheaf A of rings on X, and let $Y = \operatorname{Spec}_X(A)$.

Corollary 2. Given $f: X \to Y$ where X, Y are irreducible, if X is normal, f is finite, onto, then X can be reconstructed from Y and $f^{-1}(U)$ for some open $U \neq \emptyset \subseteq Y$.

Example 1. Let $X = V(x^3 - y^2)$, then the normalization of X is \mathbb{A}^1 , and the map is $t \mapsto (t^2, t^3)$.

Lemma 1. If $f: X \to Y$ is a map of irreducible curves, suppose f is onto, birational, Y is normal, then f is an isomorphism.

Proof. Let $\varphi \in K(Y)$, φ on $f^{-1}(U) \Leftrightarrow \varphi$ is regular on U. If φ is not, φ^{-1} is regular and is 0 at some $x \in U$. Suppose $y \mapsto x$, then φ is not regular at y.

Lemma 2. Suppose $X \to Y$ is birational map, X is complete, Y is normal, then $X \cong Y$ iso.

Proof. Since f(X) is closed and not finite, we know f must be onto.

Proof of Proposition 2. $X \to Y$ is a map of complete curves. We can assume X is normal. Then it factors through normalization $X \to Nor(Y) \to Y$. The first is isomorphism by assumption, and the second map is finite by construction.

Tangent Space Now let X be an algebraic variety, $x \in X$. Let us define the Zariski tangent space $T_x X$. We first we note the tangent space to a smooth manifold is the fiber of the bundle of vector fields $\operatorname{Vect}(M) = \operatorname{Der}(\mathcal{C}^{\infty}(M))$. Each vector field v gives a linear map $\delta_v : \operatorname{Fun}(M) \to \mathbb{C}$ that maps f to $v \cdot f|_x$, so we see that $\delta_v(fg) = f(x)\delta_v(g) + g(x)\delta_v(f)$. This suggests the definition $T_x X \subseteq \operatorname{Hom}_k(\mathcal{O}_{X,x}, k)$ given by $\{\xi \mid \xi(fg) = f(x)\xi(g) + g(x)\xi(f)\}$. The cotangent space T_x^*X is the dual $(T_x X)^*$, and we can describe it as $\mathfrak{m}_x/\mathfrak{m}_x^2$. In particular, for $X = \operatorname{Spec}(A)$, $\operatorname{Vect}(X) = \operatorname{Der}(A) = \{\delta : A \to A k\text{-linear} \mid \delta(fg) = \delta(f)(g) + f\delta(g)\}$.

MIT OpenCourseWare http://ocw.mit.edu

18.725 Algebraic Geometry Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.