Lecture 16: Bezout's Theorem

Definition 1. Two (Cartier) divisors are linearly equivalent if $D_{1}-D_{2}$ are principal.
Given an effective divisor D, we have an associated line bundle $\mathcal{L}=\mathcal{O}(D)$ given (on each open set U) by the sections of \mathcal{K} whose locus of poles (i.e. locus of zeroes in the dual sheaf) is contained in D. Now suppose X is complete, then given an invertible sheaf \mathcal{L} on X, a section σ is uniquely (up to multiplication by a constant) determined by its corresponding divisor $Z(\sigma)$, so we have a correspondence $D \underset{Z(\sigma)}{\stackrel{(\mathcal{O}(D), 1)}{\longleftrightarrow}}(L, \sigma)$. Now if σ_{1}, σ_{2} are nonzero sections, then $f=\sigma_{1} / \sigma_{2}$ is an rational function on X, and if $Z\left(\sigma_{1}\right)$ and $Z\left(\sigma_{2}\right)$ are linearly equivalent, then f has no pole and no zero; in other words, linearly equivalent divisors correspond to isomorphic line bundles. So the set of all effective divisors linearly equivalent to a fixed effective divisor D form a projective space $\mathbb{P} \Gamma(\mathcal{O}(D))$, and is called a complete linear system of divisors.

Proposition 1. X irreducible curve, $\operatorname{deg}(D)=0$ if D is a principal divisor.
Proof. D is principal, so let $D=(f)=D_{0}-D_{\infty}$ where $f: X \rightarrow \mathbb{P}^{1}, X=U_{1} \cup U_{2}, f \in k\left[U_{1}\right], 1 / f \in k\left[U_{2}\right]$, (This is clear for X normal: all local rings are DVR, so either f or $1 / f$ is in $\mathcal{O}_{X, x}$.) where $D_{0} \subseteq f\left(\mathbb{P}^{1}-\{\infty\}\right)$ is the divisor of zeroes of f, and similarly $D_{\infty} \subseteq 1 / f\left(\mathbb{P}^{1}-\{0\}\right)$ is the divisor of zeroes of $1 / f$. We need to check that degree of D_{0} is the same as that of D_{∞}, and that the degree of both slices are that of $\operatorname{deg}(f)$.

Recall that $D_{0}=\sum_{x \in f^{-1}\left(\mathbb{P}^{1}-\{\infty\}\right), f(x)=0} m_{x} x$, where $m_{x}=\operatorname{length}(\mathcal{O} / f \mathcal{O})_{x}=\operatorname{dim}\left(\Gamma\left((\mathcal{O} / f \mathcal{O})_{x}\right)\right) . \underline{1}$ Clearly
$f: U=f^{-1}\left(\mathbb{A}^{1}\right) \rightarrow \mathbb{A}^{1}$ is finite, and that $f_{*}\left(\left.\mathcal{O}_{X}\right|_{U}\right)$ is a locally free sheaf of rank equal to the degree of f. From classification of finitely generated modules over $k[t]$, we know that every module is the sum of its torsion and a free module; but this one cannot have torsion because there can be no function of X that vanishes away from finitely many points, so it's free.
$f_{*} \mathcal{O}$ is coherent follows from f being finite, which follows from that f is complete and has finite fibers. Now suppose $k\left[f^{-1}\left(\mathbb{A}^{1}\right)\right]$ is a free module of $\operatorname{rank} d$ over $k[t]=k\left[\mathbb{A}^{1}\right]$. Then $\left[K(X): K\left(\mathbb{A}^{1}\right)\right]=d$, which is the degree of the map. Thus $d=\operatorname{dim}\left(k\left[f^{-1}\left(\mathbb{A}^{1}\right)\right] / t\right)$ (dimension of fiber of $f_{*} \mathcal{O}$ at 0$)=\operatorname{dim}\left(\Gamma\left(\mathcal{O}_{U_{1}} / f \mathcal{O}_{U_{1}}\right)\right)=$ $\sum \operatorname{dim}\left(\Gamma\left(\left(\mathcal{O}_{U_{1}} / f \mathcal{O}_{U_{1}}\right)_{x}\right)\right)=\operatorname{deg}\left(D_{0}\right)$, where $U_{1}=f^{-1}\left(\mathbb{A}^{1}\right)$. The other half is dealt with similarly.

Remark 1. $k=\mathbb{C}$, X normal, $X(\mathbb{C})$ (the set X equipped with the complex topology) is a smooth compact Riemann surface (1-dimensional \mathbb{C}-manifold). $f \in K(X)$ defines a meromorphic function on $X(\mathbb{C}),(f)=$ $\sum n_{x} x, n$ being the order of zero/pole, or just $\operatorname{Res}_{x} \frac{d f}{f}$, which tells us that $\sum_{x \in X(\mathbb{C})} \operatorname{Res}_{x} \frac{d f}{f}=0$.

Proof of Bezout's Theorem The multiplicity of intersection of two curves X, Y in \mathbb{P}^{2} at $x(X, Y$ have no common components) is defined as mult $x(X, Y)=\operatorname{length}\left(i_{*} \mathcal{O}_{X} \otimes_{\mathcal{O}\left(\mathbb{P}^{2}\right)} j_{*} \mathcal{O}_{Y}\right)_{x}=\operatorname{dim} \Gamma\left(\left(i_{*} \mathcal{O}_{X} \otimes_{\mathcal{O}\left(\mathbb{P}^{2}\right)}\right.\right.$ $\left.j_{*} \mathcal{O}_{Y}\right)_{x}$). Note that $\left(i_{*} \mathcal{O}_{X} \otimes_{\mathcal{O}\left(\mathbb{P}^{2}\right)} j_{*} \mathcal{O}_{Y}\right)=\bigoplus_{x \in X \cap Y}\left(i_{*} \mathcal{O}_{X} \otimes_{\mathcal{O}\left(\mathbb{P}^{2}\right)} j_{*} \mathcal{O}_{Y}\right)_{x}$. This agrees with earlier definition.

Theorem 1.1 (Bezout's Theorem). $\sum_{x \in X \cap Y} \operatorname{mult}_{x}(X, Y)=\operatorname{deg}(X) \operatorname{deg}(Y)$.
Proof. Both sides are additive under $X=X_{1} \cup X_{2}$ where the two curves have no common components. (Clear for RHS, LHS as exercise.) Now we can assume X is irreducible, and we'll show LHS $=\operatorname{deg}\left(\left.\mathcal{O}(Y)\right|_{X}\right)$.
$\mathcal{O}(Y)$ is a line bundle with a section σ such that $(\sigma)=Y$. We know that $\mathcal{O}_{Y}=\mathcal{O} / \mathcal{O}(-Y)$ from which it follows that $\mathcal{O}_{X} \otimes \mathcal{O}_{Y}=\mathcal{O}_{X} /\left.\operatorname{im} \sigma\right|_{X}$ (where σ denotes $\mathcal{O}(-Y) \xrightarrow{\sigma} \mathcal{O}$). Compare with the definition of multiplicity above, it follows that the divisor of zeroes of $\left.\sigma\right|_{X}$, i.e. the pullback of σ, is $\sum \operatorname{mult}_{x}(X, Y) x$.

Now we know that $\mathcal{O}(Y) \cong \mathcal{O}(d)$ where $d=\operatorname{deg}(Y)$, so the isomorphism class and hence the degree of $\left.\mathcal{O}(Y)\right|_{X}$ depends only on the degree of Y. Now we can take Y to be the union of d lines; by additivity, we reduce to the case where Y is a line. Since Y and X are symmetric, also reduce to X is a line, from which the result follows.

[^0]The analytic story Let X be an irreducible normal curve over \mathbb{C}, then $X(\mathbb{C})$ is a compact 1-dimensional \mathbb{C}-manifold homeomorphic to a sphere with g handles, g being the genus of the curve. One can look at the topological homology $H^{1}(X, \mathbb{Z})=\mathbb{Z}^{2 g}$. The important variant here is the space of differential forms. Define Ω^{1} to be the sheaf of holomorphic 1-forms, e.g. $f(z) d z$. The global section $\Gamma\left(\Omega^{1}\right) \cong \mathbb{C}^{g}$. Now, since we have Poincare duality, we can define a map from de Rham classes to singular cohomology as follows: given an 1 -form ω, we map it to $\operatorname{Hom}\left(H_{1}(X, \mathbb{C}), \mathbb{C}\right)=H^{1}(X, \mathbb{C})=\mathbb{C}^{2 g}$ as $[c] \mapsto \int_{c} \omega$. Thus we have $H^{1}(X, \mathbb{C})=\operatorname{Im}\left(\Gamma\left(\Omega^{1}\right)\right) \oplus \overline{\operatorname{Im}\left(\Gamma\left(\Omega^{1}\right)\right)}=H^{1,0} \oplus H^{0,1}$, usually called the Hodge decomposition.

Recall the GAGA theorem, which states that holomorphic line bundles are the same as algebraic line bundles, which are parametrized by the Picard group. Now Picard group is (Divisors) / (Principle Divisors), and there is a degree homomorphism Pic $\rightarrow \mathbb{Z}$, with the kernel denoted Pic°. It turns out that $\operatorname{Pic}^{\circ} \cong \Gamma\left(\Omega^{1}\right)^{*} / H_{1}(X, \mathbb{Z})$ (image of $H_{1}(X, \mathbb{Z}) \subseteq H_{1}(X, \mathbb{C})$ under the integral map) $\cong \mathbb{C}^{g} / \mathbb{Z}^{2 g}$. The structure $\Gamma\left(\Omega^{1}\right)^{*} / H_{1}(X, \mathbb{Z})$ is usually called the Jacobian of the curve, and the isomorphism the Abel-Jacobi map.

If $D=(f)$ is a principal divisor, D gets mapped into 0 by the Abel-Jacobi map above. Sketch of proof: given f from $X \rightarrow \mathbb{P}^{1}$, consider a family of divisors $D_{0}-D_{z}, z \in \mathbb{P}^{1}$. If $z=0$, then this is the 0 divisor; when $z=\infty$, we get our divisor $D=(f)$. Easy to see that $z \mapsto A J\left(D_{0}-D_{z}\right)$ is a holomorphic function $\mathbb{C P}^{1} \rightarrow \mathbb{C}^{g} / \mathbb{Z}^{2 g}$. Since $\mathbb{C P}^{1}$ is simply connected, it lifts to $\mathbb{C P}^{1} \rightarrow \mathbb{C}^{g}$, which is constant by maximal principle.

Our next topic is smoothness, which is a local property. Let X be an algebraic variety, and x be a point. Define $\operatorname{dim}_{x}(X)$ to be the maximum of dimensions of components passing through x.

Definition 2. x is a smooth point on X if $\operatorname{dim}_{x}(X)=\operatorname{dim}\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)$, where \mathfrak{m}_{x} is the maximal ideal in $\mathcal{O}_{X, x}$.
Example 1. Suppose X in \mathbb{A}^{n} is a hypersurface (so codimension 1), $I_{X}=(f)$. Then x is a smooth point iff $\partial f / \partial z_{i} \neq 0$ at x for some i.

Corollary 1. For X, Y curves in \mathbb{P}^{2}, the intersection multiplicity is greater than 1 if either X or Y is not smooth at x.

To see this, suppose $x=(0,0) \in \mathbb{A}^{2}$, then $\mathcal{O}_{X} \rightarrow k[x, y] /(x, y)^{2}$, then $\mathcal{O}_{X} \otimes \mathcal{O}_{Y} \rightarrow \mathcal{O}_{Y} / \mathfrak{m}_{\mathcal{O}_{Y}}^{2}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ The subscript here refers to the canonical split of sheaves supported at finitely many points, NOT stalks; the same for below.

