Last time we showed that when X = Spec A is an affine scheme, we have the equivalence $\text{QCoh}(X) \cong \text{Mod}(A)$ given by the Γ and the Loc functors. In particular, these functors are exact, and we have $\Gamma(\mathcal{F}) = 0 \implies \mathcal{F} = 0$. This in particular implies that $\Gamma \circ \text{Loc} = 1$ (We know this holds for A, now check the general case by choosing a presentation.). We need to check the other direction: $\text{Loc} \circ \Gamma(\mathcal{F}) = \mathcal{F}$.

Definition 1. A functor $\mathcal{F} : \mathcal{C}_1 \to \mathcal{C}_2$ is called conservative if for every $g \in \text{Hom}(\mathcal{C}_1)$, $\mathcal{F}(g)$ is an isomorphism implies that g is an isomorphism. Note that this does not say that $\mathcal{F}(A) \cong \mathcal{F}(B) \implies A \cong B$.

Example 1. Let C_1, C_2 be abelian categories, and \mathcal{F} an exact functor. Then $\ker(\mathcal{F}(f)) = \mathcal{F}(\ker(f))$, and the same holds for cokernels.

Lemma 1. Let \mathcal{L} , \mathcal{R} be adjoint functors, \mathcal{L} fully faithful (i.e. $\mathcal{R} \circ \mathcal{L} \cong Id$), \mathcal{R} is conservative, then the two functors are inverse pairs in an categorical equivalence.

Proof. We need $\mathcal{RL} \cong Id$, which follows from $\mathcal{RLR} \cong \mathcal{R}$ by conservative property, which in turns follows from the fully faithfulness of \mathcal{F} .

Now back to the discussion on Loc and Γ . We already know that Loc is fully faithful, and it is sufficient to show it is essentially surjective, i.e. every \mathcal{F} has some M such that $\mathcal{F} = \widetilde{M}$. The image of \widetilde{M} are the functors that have presentations, i.e. $\mathcal{O}^{\oplus I} \to \mathcal{O}^{\oplus J} \to \mathcal{F} \to 0$, so it suffices to check that every \mathcal{F} has a presentation. We check that for every \mathcal{F} , there exists a surjection $\mathcal{O}^{\oplus J} \twoheadrightarrow \mathcal{F}$. To see so, consider $\Gamma(\mathcal{F}) = \operatorname{Hom}(\mathcal{O}, \mathcal{F})$ (structure sheaf is the terminal object in the category of sheaves). So if we take a set of generators $m_j, j \in J$ of \mathcal{F} , we obtain an onto map $\Gamma(\mathcal{O}^{\oplus J}) \to \Gamma(\mathcal{F})$, so $\mathcal{O}^{\oplus J} \to \mathcal{F}$ is surjective.

Remark 1. Results of this type are generally referred to as Morita theories.

Now suppose A contains arbitrary direct sums and that $\operatorname{Hom}(P, \bullet)$ commutes with the direct sum. We say $P \in A$ is a *projective generator* if the *P*-projection functor, $X \mapsto \operatorname{Hom}(P, X)$, is an exact functor, and that $\operatorname{Hom}(P, X) = 0 \Leftrightarrow X = 0$. In this case, one can show that $A \cong \operatorname{Mod}(\operatorname{End} P)^{opp}$, and, in particular, as a corollary, we have $\operatorname{Mod}(A)_{f.g.} \cong \operatorname{Coh}(X)$.

Lemma 2. $f : X \to Y$ is an affine morphism if and only if for every open $U \subseteq U$, $f^{-1}(U)$ is affine. $f : X \to Y$ is a finite morphism if and only if it is affine and, for every open $U \subseteq Y$ such that U = Spec A, if $f^{-1}(U) = \text{Spec } B$ then B is a finite A-algebra.

Proof. Let U be affine. By definition, there exists some affine cover $U = \bigcup U_i$ such that $f^{-1}(U_i)$ is affine. Write $V = f^{-1}(U)$, then we want to have V = Spec A. Note that $k[U_i] = f_*(\mathcal{O})(U_{f_i}) = f_*(\mathcal{O})(U)_{f_i} = A_{(f_i)}$, and each $A_{(f_i)}$ is finitely generated. Take all those rings together as an algebra over B = k[U], we obtain a finitely generated ring A. The check that V = Spec A is routine. For the second part, suppose $f : X \to Y$ finite (in the old definition), then $f_*\mathcal{O}_X$ is a coherent sheaf on Y, i.e. $f_*\mathcal{O}_X(U)$ is finite over \mathcal{O}_Y for some open set U.

Proposition 1. For any fixed Y, the category of X that has an affine morphism to Y corresponds to the opposite category of quasicoherent sheaves of \mathcal{O}_Y -algebra (which is finitely generated and reduced).

To see this, given any map $f: X \to Y$ we obviously obtain a sheaf $f_*\mathcal{O}_X$. Conversely, given a sheaf \mathcal{A} of \mathcal{O}_Y algebra, pick an affine cover $Y = \bigcup_i U_i$, glue together all the Spec $\mathcal{A}[U_i]$ by identifying Spec $\mathcal{A}[U_i \cap U_j]$

that sits in two copies (here we assume seperatedness).

Proposition 2. Suppose $X \to Y$ is affine. Let $\mathcal{A} = f_*\mathcal{O}_X$, then $Qcoh(X) = \{Qcoh(Y) \text{ with an } \mathcal{A} \text{ action}\}$, where the map is $\mathcal{F} \mapsto f_*\mathcal{F}$.

Let $i: Z \hookrightarrow X$ be an embedding of a closed subvariety, then i_* is a full embedding of a subcategory, with one-sided inverse i^* . It is easy to see that the image of i_* consists of those \mathcal{F} such that $\mathcal{F}|_{X-Z} = 0$. On the other hand, for every $Z \subseteq X$ we have a subsheaf $\mathcal{I}_Z \subseteq \mathcal{O}_X$ consisting of those f that vanish on Z. It is obviously an ideal sheaf, and we in fact have a correspondence between closed subvarieties and radical ideal sheaves. **Proposition 3.** $i_* : \mathbf{Qcoh}(Z) \to \mathbf{Qcoh}(X)$ (or coherent to coherent) is a full embedding and the image are the $\mathcal{F}s$ such that $\mathcal{I}_Z \mathcal{F} = 0$.

For example, consider X = Spec A, and let Z = Spec A/I, then A/I modules are the A modules that are killed by I. Let U = X - Z, then $i_*\mathcal{F}|_U = 0$. Note the converse doesn't hold: there might be \mathcal{F} that restricts to U to be trivial, but does not come from i_*M for any M. For instance, let $X = \mathbb{A}^1, Z = \{0\}$, let $M = k[t]/t^2, \mathcal{F} = \widetilde{M}$, and let $i : k[t] \to k$ that sends t to 0. There does exist a weaker property: if $\mathcal{F}|_U = 0$, σ is a section of \mathcal{F} , then there exists some n such that $\mathcal{I}_Z^n \sigma = 0$. In addition, if \mathcal{F} is coherent, then we actually have ssome n such that $\mathcal{I}_Z^n \mathcal{F} = 0$.

Locally free sheaves of rank 1 are called **invertible sheaves**.

Example 2. Let $X = \mathbb{P}^n$, then $\mathcal{O}_{\mathbb{P}^n}(d)(U) = k[\tilde{U}]_d = \{p/q \mid \deg p - \deg q = d, q|_{\tilde{U}} \neq 0\}$ is an invertible sheaf on X, where $\tilde{U} \hookrightarrow U$ is the projection compatible with $\mathbb{A}^{n+1} - \{0\} \hookrightarrow \mathbb{A}^{n+1}$.

We would like to understand maps $X \to \mathbb{P}^n$, by which we mean the similar knowledge as the fact that T.F.A.E.:

- Maps $X \to \mathbb{A}^n$;
- Homs $k[x_1, \ldots, x_n] \to k[X];$
- *n*-tuple elements in k[X].

And our claim is that T.F.A.E.:

- Maps $X \to \mathbb{P}^n$;
- Invertible sheaves \mathcal{L} on X with (n+1) elements s_0, \ldots, s_n in $\Gamma(\mathcal{L})$ such that they generate \mathcal{L} .

Here to a map $f: X \to \mathbb{P}^n$ we assign $f^*\mathcal{O}(1)$ with sections t_0, \ldots, t_n . Conversely, given \mathcal{L} generated by s_0, \ldots, s_n set $f = (s_0 : \ldots : s_n)$, locally we can identify \mathcal{L} with \mathcal{O} so s_0, \ldots, s_n give functions on Uwith no common zeroes. If f_0, \ldots, f_n are these functions, then $x \mapsto (f_0(x) : \ldots : f_n(x))$ is a map $U \mapsto \mathbb{P}^n$ independent of choice that gives an isomorphism $\mathcal{L} \cong \mathcal{O}$. MIT OpenCourseWare http://ocw.mit.edu

18.725 Algebraic Geometry Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.