
18.725 Algebraic Geometry I Lecture

Lecture 11: Sheaf Functors and Quasi-coherent Sheaves

Recall that last time we defined a sheaf and a presheaf on a topological space, respectively denoted as
Sh(X) ⊆ PreSh(X). We’ll work with sheaves of abelian groups on k-vector spaces. (Recall that F(X) ∈
PreSh(X) if F (U) is a k-vector space, and F(U) restricts to F(V ) if V ⊆ U .)

Proposition 1. Presheaf of abelian groups on k-vector space is an abelian category.

Proof. If F −→f G, then ker(f)(U) = ker(F(U)→ F(U)), and same for cokernel.

Note that Sh(X) is a full abelian subcategory. Now we introduce the sheafification functor: the embed-
ding functor Sh→ PreSh has a
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U,∃V 3 x ⊆ U, s ∈ F(V ), s.t. {σy}y V comes from s}. This shows in particular colimits exist in Sh(X):∈
cokerSh(F → G) = cokerPresh(F → G)#. This just follows from general abstract nonsense.

Example 1. An example of a cokernel in Presh that is not a sheaf: take X = S1, let F be the continuous
function sheaf C(X,R) (i.e. F(U) are the continuous maps U → R), and G be the constant sheaf Z (i.e.
G(U) consists of constant Z-valued function on each connected U ; more precisely, G(U) are continuous maps
U → Z where the latter has the discrete topology), then (F/G)Sh(U) would be continuous maps U → R/Z,
whereas (F/G)Presh(U) would be the continuous maps (U,R) mod out the constant maps.

Proposition 2. Some properties:

1. F → F# is exact; in particular it doesn’t change the stalks.

2. F → F# is left adjoint to the embedding Presh→ Sh, and is an isomorphism if F itself is a sheaf.

As an example, consider the constant presheaf V given by F(U) = V constant. Then F# is a constant
sheaf given by F#(U) = {locallyconstantmaps U → V }. (Why is F not a sheaf itself? Answer: it
fails the local identity axiom on U = ∅.)

3. F 7→ Fx is an exact functor; in other words, a sequence of sheaves 0→ F → F ′ → F ′′ → 0 is exact iff
0→ Fx → Fx′ → Fx′′ → 0 is exact for all x.

Pullback and Pushforward If f : X → Y is a continuous map, then we have f∗ : Sh(Y ) → Sh(X),
and f : Sh(X) → Sh(Y ). The latter (pushforward) is given by f∗ ∗F(U) = F(f−1(U)), and the former
(pullback) is given by the sheafification of the presheaf lim F(V ). In particular, we have

f(U
−→
)

Fx = i∗x(F); so
⊆V

f∗(F)x = Ff(x), and in particular, we see that f∗ is exact. On the other hand, f is only left exact (to see∗
it is not necessarily exact, note that the pushforward to a point is the same as the global section, which is
not necessarily exact).

Structure Sheaf Suppose X is a space with functions, then X carries the structure sheaf OX , given by
OX(U) = k[U ]. Say X = Spec(A) is affine, and x ∈ X, then O(X)x is the localization of A at the maximal
ideal mx. This makes X a ringed space, i.e. a topological space equipped with a sheaf of rings.

A sheaf of modules over a ringed space (X,A) is a sheaf F where F(U) is an A(U) module, such that
the restriction to subsets respects the module structure. A sheaf of modules F on a ringed space (X,A) is
quasicoherent, if ∀x∃U 3 x such that there exists an exact sequence A⊕IU → A⊕JU → FU → 0, where the first
two are free modules (with possibly infinite dimensions).
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Remark 1. Caution:
⊕

A is the sum in the category of sheaves, given by (
⊕

A)# = {s A⊕ j∈J PreSh

∈ (U)
j∈J

|

locally s ∈ }, i.e. ∀x ∈ U∃V 3 x, V ⊆ U such that only finitely⊕many components of s|V are

∏
nonzero.

One can check that the section matches with the normal notion of A(U) if U is quasicompact. If X is
J

Noetherian, then any open U is quasicompact, so (A⊕J)(U) = A(U)⊕J .

Lemma 1. If X is Noetherian, then Γ(limF)(U) = limF(U), where the right side is the filtered direct limit.−→ −→
In general, if X is a topological space, Γ is the global section functor Sh(X)→ Vectk, then it has a left

adjoint L(Γ) where L(Γ)(V ) the locally constant sheaf with values in V .

Quasicoherent O-modules We denote the category of quasicoherent OX modules by QCoh(X), where
X is an algebraic variety.

Theorem 1.1. If X = Spec(A), then QCoh(X) ∼= Mod(A), given by F → Γ(F) = F(X).

˜Proof. First construct the adjoint (localization) functor Loc, where we use M to denote Loc(M). To do so,
first construct a presheaf L that sends U to k[U ] ⊗A M , then sheafify this presheaf. The functor L is left
adjoint to the canonical functor Mod(k[U ]) → Mod(A), then one can deduce that L is left adjoint to Γ,
which sends presheaves of O-modules to A-modules, from which the theorem follows.

Note that Loc is an exact functor, which follows from the description of the stalks. Note that F# is
defined by F(U), where U is an fixed base of topology. In particular, use the base {Uf = X − Zf} (the
Zariski topology), and note that k[Uf ] = A(f), thus k[Uf ]⊗AM = M(f), and note that M 7→M(f) is exact.

˜ ˜Finally, Mx = lim M(f) = Mmx is exact. It’s clear that A =
f |f(x)=0

O. As a corollary,−→

˜Corollary 1. M is a quasicoherent OX module.

To see this, choose a presentation, and observe that ⊕̃i∈IMi = ⊕M̃i.
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