Lecture 11: Sheaf Functors and Quasi-coherent Sheaves

Recall that last time we defined a sheaf and a presheaf on a topological space, respectively denoted as $\mathbf{Sh}(X) \subseteq \mathbf{PreSh}(X)$. We'll work with sheaves of abelian groups on k-vector spaces. (Recall that $\mathcal{F}(X) \in$ $\mathbf{PreSh}(X)$ if F(U) is a k-vector space, and $\mathcal{F}(U)$ restricts to $\mathcal{F}(V)$ if $V \subseteq U$.)

Proposition 1. Presheaf of abelian groups on k-vector space is an abelian category.

Proof. If $\mathcal{F} \xrightarrow{f} G$, then ker $(f)(U) = \text{ker}(\mathcal{F}(U) \to \mathcal{F}(U))$, and same for cokernel.

Note that $\mathbf{Sh}(X)$ is a full abelian subcategory. Now we introduce the sheafification functor: the embedding functor $\mathbf{Sh} \to \mathbf{PreSh}$ has a left adjoint, sending a presheaf \mathcal{F} to its associated sheaf $\mathcal{F}^{\#}$. Recall that a This charge functor $\operatorname{Sh} \to \operatorname{FreSh}$ has a felt adjoint, sending a presheaf \mathcal{F} to its associated sheaf $\mathcal{F}^{\#}$. Recall that a presheaf is a sheaf if for all $U = \bigcup U_{\alpha}$, we have the exact sequence $0 \to \mathcal{F}(U) \to \prod_{\alpha} \mathcal{F}(U_{\alpha}) \to \prod_{\alpha,\beta} \mathcal{F}(U_{\alpha} \cap U_{\beta})$. So we define $\mathcal{F}^{\#}(U) = \lim_{U = \bigcup_{\alpha} U_{\alpha}} \ker(\prod \mathcal{F}(U_{\alpha}) \to \prod_{\alpha,\beta} \mathcal{F}(U_{\alpha} \cap U_{\beta}))$. Another description is via stalks: let \mathcal{F} be a presheaf on $X, x \in X$, and define $\mathcal{F}_{x} = \lim_{x \in U} \mathcal{F}(U)$. Then $\mathcal{F}^{\#}(U) = \{\sigma \in \prod_{x \in U} \mathcal{F}_{x} \mid \forall x \in U\}$.

 $U, \exists V \ni x \subseteq U, s \in \mathcal{F}(V), \text{s.t. } \{\sigma_y\}_{y \in V} \text{ comes from } s\}$. This shows in particular colimits exist in $\mathbf{Sh}(X)$: coker_{Sh} $(\mathcal{F} \to \mathcal{G}) = \operatorname{coker}_{\mathbf{Presh}}(\mathcal{F} \to \mathcal{G})^{\#}$. This just follows from general abstract nonsense.

Example 1. An example of a cohernel in **Presh** that is not a sheaf: take $X = S^1$, let \mathcal{F} be the continuous function sheaf $C(X,\mathbb{R})$ (i.e. $\mathcal{F}(U)$ are the continuous maps $U \to \mathbb{R}$), and \mathcal{G} be the constant sheaf \mathbb{Z} (i.e. $\mathcal{G}(U)$ consists of constant \mathbb{Z} -valued function on each connected U; more precisely, $\mathcal{G}(U)$ are continuous maps $U \to \mathbb{Z}$ where the latter has the discrete topology), then $(\mathcal{F}/\mathcal{G})_{Sb}(U)$ would be continuous maps $U \to \mathbb{R}/\mathbb{Z}$. whereas $(\mathcal{F}/\mathcal{G})_{Presh}(U)$ would be the continuous maps (U, \mathbb{R}) mod out the constant maps.

Proposition 2. Some properties:

- 1. $\mathcal{F} \to \mathcal{F}^{\#}$ is exact; in particular it doesn't change the stalks.
- 2. $\mathcal{F} \to \mathcal{F}^{\#}$ is left adjoint to the embedding **Presh** \to **Sh**, and is an isomorphism if \mathcal{F} itself is a sheaf.

As an example, consider the constant presheaf V given by $\mathcal{F}(U) = V$ constant. Then $\mathcal{F}^{\#}$ is a constant sheaf given by $\mathcal{F}^{\#}(U) = \{ \text{locally constant maps } U \to V \}.$ (Why is \mathcal{F} not a sheaf itself? Answer: it fails the local identity axiom on $U = \emptyset$.)

3. $\mathcal{F} \mapsto \mathcal{F}_x$ is an exact functor; in other words, a sequence of sheaves $0 \to \mathcal{F} \to \mathcal{F}' \to \mathcal{F}'' \to 0$ is exact iff $0 \to \mathcal{F}_x \to \mathcal{F}'_x \to \mathcal{F}''_x \to 0$ is exact for all x.

Pullback and Pushforward If $f: X \to Y$ is a continuous map, then we have $f^*: \mathbf{Sh}(Y) \to \mathbf{Sh}(X)$, and $f_*: \mathbf{Sh}(X) \to \mathbf{Sh}(Y)$. The latter (pushforward) is given by $f_*\mathcal{F}(U) = \mathcal{F}(f^{-1}(U))$, and the former (pullback) is given by the sheafification of the presheaf $\lim_{x \to \infty} \mathcal{F}(V)$. In particular, we have $\mathcal{F}_x = i_x^*(\mathcal{F})$; so $f(U) \subseteq V$

 $f^*(\mathcal{F})_x = \mathcal{F}_{f(x)}$, and in particular, we see that f^* is exact. On the other hand, f_* is only left exact (to see it is not necessarily exact, note that the pushforward to a point is the same as the global section, which is not necessarily exact).

Structure Sheaf Suppose X is a space with functions, then X carries the structure sheaf \mathcal{O}_X , given by $\mathcal{O}_X(U) = k[U]$. Say $X = \operatorname{Spec}(A)$ is affine, and $x \in X$, then $\mathcal{O}(X)_x$ is the localization of A at the maximal ideal \mathfrak{m}_x . This makes X a *ringed space*, i.e. a topological space equipped with a sheaf of rings.

A sheaf of modules over a ringed space (X, A) is a sheaf \mathcal{F} where $\mathcal{F}(U)$ is an A(U) module, such that the restriction to subsets respects the module structure. A sheaf of modules \mathcal{F} on a ringed space (X, A) is quasicoherent, if $\forall x \exists U \ni x$ such that there exists an exact sequence $A_{U}^{\oplus I} \to A_{U}^{\oplus J} \to \mathcal{F}_{U} \to 0$, where the first two are free modules (with possibly infinite dimensions).

Remark 1. Caution: $\bigoplus_{j \in J} A$ is the sum in the category of sheaves, given by $(\bigoplus_{PreSh} A)^{\#} = \{s \in \prod_{j \in J} A(U) \mid \text{locally } s \in \bigoplus\}$, i.e. $\forall x \in U \exists V \ni x, V \subseteq U$ such that only finitely many components of $s|_V$ are nonzero. One can check that the section matches with the normal notion of $\bigoplus A(U)$ if U is quasicompact. If X is

Noetherian, then any open U is quasicompact, so $(A^{\oplus J})(U) = A(U)^{\oplus J}$.

Lemma 1. If X is Noetherian, then $\Gamma(\lim \mathcal{F})(U) = \lim \mathcal{F}(U)$, where the right side is the filtered direct limit.

In general, if X is a topological space, Γ is the global section functor $\mathbf{Sh}(X) \to \mathbf{Vect}_k$, then it has a left adjoint $L(\Gamma)$ where $L(\Gamma)(V)$ the locally constant sheaf with values in V.

Quasicoherent \mathcal{O} -modules We denote the category of quasicoherent O_X modules by $\mathbf{QCoh}(X)$, where X is an algebraic variety.

Theorem 1.1. If X = Spec(A), then $QCoh(X) \cong Mod(A)$, given by $\mathcal{F} \to \Gamma(\mathcal{F}) = \mathcal{F}(X)$.

Proof. First construct the adjoint (localization) functor Loc, where we use \tilde{M} to denote Loc(M). To do so, first construct a presheaf L that sends U to $k[U] \otimes_A M$, then sheafify this presheaf. The functor L is left adjoint to the canonical functor $\mathbf{Mod}(k[U]) \to \mathbf{Mod}(A)$, then one can deduce that L is left adjoint to Γ , which sends presheaves of \mathcal{O} -modules to A-modules, from which the theorem follows.

Note that Loc is an exact functor, which follows from the description of the stalks. Note that $\mathcal{F}^{\#}$ is defined by $\mathcal{F}(U)$, where U is an fixed base of topology. In particular, use the base $\{U_f = X - Z_f\}$ (the Zariski topology), and note that $k[U_f] = A_{(f)}$, thus $k[U_f] \otimes_A M = M_{(f)}$, and note that $M \mapsto M_{(f)}$ is exact. Finally, $\tilde{M}_x = \lim_{\substack{f \mid f(x) \neq 0}} M_{(f)} = M_{\mathfrak{m}_x}$ is exact. It's clear that $\tilde{A} = \mathcal{O}$. As a corollary,

Corollary 1. \tilde{M} is a quasicoherent O_X module.

To see this, choose a presentation, and observe that $\widetilde{\bigoplus_{i \in I} M_i} = \bigoplus \tilde{M}_i$.

MIT OpenCourseWare http://ocw.mit.edu

18.725 Algebraic Geometry Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.