HOMEWORK 9 FOR 18.725, FALL 2015 DUE THURSDAY, NOVEMBER 19 BY 1PM.

- (1) Show that an open embedding of one dimensional varieties is an affine morphism. Conclude that every open subset in an affine curve is affine.
- (2) Suppose that the zero set of polynomials $P_1, \dots, P_m \in k[x_1, \dots, x_N]$ is a smooth *n*-dimensional irreducible subvariety $X \subset \mathbb{A}^N$. Assume also that for every $x \in X$ the matrix $\left(\frac{\partial P_i}{\partial x_j}\right)$ has rank N-n. Show that polynomials P_i generate the ideal of X.
- (3) Show that if a nonlinear hypersurface $X \subset \mathbb{P}^n$ contains a linear subspace of dimension $r \geq \frac{n}{2}$ then X is singular.
- (4) A resolution of singularities for a singular irreducible variety Y is a map π : X → Y such that π is projective,¹ birational, while X is smooth. Let Y be the quadratic cone x² + y² + z² + t² = 0 in A⁴.
 - (a) Show that X = Ŷ, the blow-up of zero in Y, is a resolution of singularities of Y. Check also that the preimage of 0 in X is isomorphic to ℙ¹ × ℙ¹.
 - (b) (Optional problem) Find two nonisomorphic² resolutions of singularities X_1 , X_2 of Y, such that the preimage of zero is isomorphic to \mathbb{P}^1 .
- (5) (a) Determine the singular points of the Steiner (or Roman) surface $S \subset \mathbb{P}^3$ given by $x_1^2 x_2^2 + x_2^2 x_0^2 + x_0^2 x_1^2 x_0 x_1 x_2 x_3 = 0$. Describe its tangent cone at (0:0:0:1).
 - (b) (Optional problem) Show that S is the image of $\mathbb{P}^2 \subset \mathbb{P}^5$ under a linear rational map $\mathbb{P}^5 \dashrightarrow \mathbb{P}^3$; here $\mathbb{P}^2 \subset \mathbb{P}^5$ is the image of the second Veronese embedding.
- (6) (Optional problem)
 - (a) Let X be a smooth complete surface. Show that Pic(X) carries a symmetric bilinear form, such that for irreducible divisors D_1 , D_2 we have

 $\langle [D_1], [D_2] \rangle = \deg(\mathcal{O}(D_1)|_{D_2}) = \dim \Gamma(\mathcal{O}_{D_1} \otimes_{\mathcal{O}_X} \mathcal{O}_{D_2}),$

where the second equality applies only if $D_1 \neq D_2$.

The quotient of Pic(X) by the kernel of this form is called the *Neron-Severi* group of X.

(b) Show that the Picard group of Fermat quartic $x_0^4 + x_1^4 + x_2^4 + x_3^4$ in \mathbb{P}^3 contains³ a free abelian group of rank 20.

¹This means that π can be decomposed as a composition of a closed embedding to $Y \times \mathbb{P}^N$ for some N and projection to Y.

²The two varieties X_1 and X_2 may be isomorphic, they are required to be nonisomorphic as resolutions, i.e. there is no isomorphism $X_1 \cong X_2$ compatible with the map to Y.

³In fact, a smooth quartic in \mathbb{P}^3 is an example of a K3 surface, i.e. its canonical line bundle is trivial and (for $k = \mathbb{C}$) the corresponding complex manifold is simply-connected. The Picard

2 HOMEWORK 9 FOR 18.725, FALL 2015 DUE THURSDAY, NOVEMBER 19 BY 1PM.

[Hint: it is easy to write down many explicit divisors on X, use (a) to find 20 of those such that the bilinear form in (a) is nondegenerate on their span].

group of a K3 surface is known to be a free abelian group whose rank r satisfies $1 \le r \le 20$. Thus Picard group of the Fermat quartic is isomorphic to \mathbb{Z}^{20}

18.725 Algebraic Geometry Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.