HOMEWORK 5 FOR 18.725, FALL 2015 DUE TUESDAY, OCTOBER 20 BY 1PM.

- (1) Prove that a quasi-affine complete variety is finite.
- (2) Show that a quasiaffine variety Y is isomorphic to a closed subvariety in the complement to a linear subspace \mathbb{A}^m in the affine space \mathbb{A}^n .
- (3) Check that the intersection of the two quadrics in \mathbb{P}^3 given respectively by the equations xy = zw and $x^2 = yw$ is the union of the twisted cubic and a line.
- (4) (Jouanolou trick for projective varieties)
 - (a) Let Y be the space of matrices $E \in Mat_n(k)$ such that $E^2 = E$ and rank(E) = 1. Show that the Y is a closed subvariety in $\mathbb{A}^{n^2} = Mat_n(k)$.

[Hint: instead of the open condition $E \neq 0$ impose the closed condition det(1-E) = 0].

- (b) Let X be a projective variety. Prove that there exists an affine variety Y and an onto map $Y \to X$ whose fibers are isomorphic to an affine space \mathbb{A}^N .
- [Hint: reduce it to $X = \mathbb{P}^{n-1}$, then show that Y from part (a) will do]. (5) $X_{n,m}$ be the curve $y^n = x^m$, (n, m) = 1.
 - (a) Show that the blow up $Bl_0(X)$ is isomorphic to $X_{n',m'}$ for some n', m' and compute n', m'.
 - (b) Show that applying a sequence of blow-ups to $X_{n,m}$ one can end up with a curve isomorphic to \mathbb{A}^1 .
- (6) Let X = Spec(A) be an affine variety with an action of a finite group G. Let $Y = Spec(A^G)$, where A^G denotes the subring of G-invariants. (A Theorem by E. Noether asserts that A^G is finitely generated, thus the algebraic variety Y is well defined). We have a morphism $X \to Y$.
 - (a) Show that for a variety T we have a canonical bijection $Hom(Y,T) \cong Hom(X,T)^G$ sending a map $Y \to T$ to the composition $X \to Y \to T$. This is expressed by saying that Y is a *categorical quotient* of X by G.
 - (b) Let $G = \mathbb{Z}/3\mathbb{Z}$ act on \mathbb{A}^2 so that the generator acts by $(x, y) \mapsto (\zeta x, \zeta^{-1}y)$, where ζ is a primitive cubic root of 1 (we assume that $char(k) \neq 3$). Show that $X = \mathbb{A}^2/\mathbb{Z}_3$ is isomorphic to a degree 3 hypersurface X in \mathbb{A}^3 of the type considered in problem 4, pset 4.
 - (c) Let $x \in X$ be the image of 0 in X and $\hat{X} = Bl_x(X)$ be the blow-up of X at x. Describe the preimage of x in \hat{X} .
 - (d) (Optional bonus problem) Show that for some point $y \in \hat{X}$ the variety $Bl_y(\hat{X})$ can be presented as a union of affine open subsets isomorphic to \mathbb{A}^2 .
- (7) (Optional bonus problem) Consider the rational map $\mathbb{P}^2 \to \mathbb{P}^4$ given by $\phi(x_0: x_1: x_2) = (x_0 x_1: x_0 x_2: x_1^2: x_1 x_2: x_2^2).$

Prove that ϕ is birational map from \mathbb{P}^2 to a (closed) surface $X \subset \mathbb{P}^4$, that X is identified with the blow-up of (1:0:0); in particular, the inverse map $X \to \mathbb{P}^2$ is regular.

(8) (Optional bonus problem: Jouanolou trick in general)

 $\mathbf{2}$

(a) Prove that a quasiprojective variety X is isomorphic to a closed subvariety in the complement to a linear subspace \mathbb{P}^m in the projective space \mathbb{P}^n .

[Hint: X is closed in $U = \mathbb{P}^n \setminus Z$ where Z is the zero set of homogeneous polynomials f_1, \ldots, f_m . Without loss of generality we can assume that f_1, \ldots, f_m have the same degree. All monomials of the given degree define a map $\mathbb{P}^n \to \mathbb{P}^N$, and Z is the preimage of the linear subspace under that map. Now U is realized as a closed subvariety in $\mathbb{P}^n \times (\mathbb{P}^N \setminus \mathbb{P}^{N'})$; now apply Veronese embedding and check that $\mathbb{P}^n \times \mathbb{P}^{N'}$ is the preimage of a linear subspace].

- (b) Let M be the space of matrices $E \in Mat_{n+1}(k)$ such that $E^2 = E$, (c) Let us be use of matrices B ⊂ mat_{n+1}(w) such that B ⊂ n and C ⊂ n and and C ⊂ n and C ⊂ n and C ⊂ n and C ⊂ n and C ⊂ n
- to an affine space \mathbb{A}^{n-m-1} .
- (d) Conclude that for any quasiprojective variety X there exists an affine variety Y with an onto morphism $Y \to X$ whose fibers are isomorphic to \mathbb{A}^N .

18.725 Algebraic Geometry Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.