HOMEWORK 11 FOR 18.725, FALL 2015 DUE THURSDAY, DECEMBER 10 BY 1PM.

(1) Show that a quasicoherent sheaf on a quasi-projective variety ${ }^{1} X$ is a union of its coherent subsheaves.
[Hint: reduce to the case when X is projective by replacing your sheaf by its direct image under an appropriate open embedding. If \mathcal{F} is a quasicoherent sheaf on $X \subset \mathbb{P}^{n}$, show that every section of $\left.\mathcal{F}\right|_{\mathbb{A}^{n} \cap X}$ extends to a map $\mathcal{O}(-d) \rightarrow \mathcal{F}$ for some d. Now consider the images of the direct sum of several such maps.]
(2) Recall that the arithmetic genus of a connected complete curve X is the dimension of the space $H^{1}\left(\mathcal{O}_{X}\right)$.

Suppose that each component of X is isomorphic to \mathbb{P}^{1}, two components intersect by at most one point and each such intersection point is a nodal singularity (i.e. its completed local ring is isomorphic to $k[[x, y]] /(x y))$.

Let Γ be a graph whose vertices are indexed by components of X and two vertices are connected by an edge when the corresponding components intersect. Show that $p_{a}(X)=1-\chi(\Gamma)$, where p_{a} denotes the arithmetic genus and χ is the Euler characteristic.
(3) Let $X=\operatorname{Spec}(A)$ be a normal affine irreducible surface with the only ingular point $x \in X$. Show that the following three statements are equivalent:
(a) $C l(X)=0$, where $C l$ is the divisor class group, i.e. the quotient of the group of Weil divisors by the subgroup of principal divisors. $\underline{2}$
(b) $\operatorname{Pic}(X \backslash x)=0$.
(c) A is UFD.
(4) Let X be as in problem 3 and let $\pi: Y \rightarrow X$ be a resolution of singularities of X, suppose that $\pi^{-1}(X \backslash x)$ maps isomorphically to $X \backslash x$. Suppose also that the canonical line bundle K_{Y} is trivial and that $\pi^{-1}(x)$ is a curve of the type described in problem 2, let D_{1}, \ldots, D_{n} be the components of $\pi^{-1}(x)$. We get a homomorphism $\operatorname{Pic}(Y) \rightarrow \mathbb{Z}^{n}, L \mapsto\left(d_{i}\right)$, where the restriction of L to D_{i} is isomorphic to $\mathcal{O}_{\mathbb{P}^{1}}\left(d_{i}\right)$. Compute the image of (the class of) $\mathcal{O}\left(D_{i}\right)$ under that homomorphism.
(5) Let G be a finite subgroup in $S L(2, \mathbb{C})$ and $X=\mathbb{A}^{2} / G$, let $x \in X$ be the image of 0 . It can be shown that X is normal and there exists a unique resolution $Y \rightarrow X$ satisfying the assumptions of problem 4. Moreover, the $\operatorname{map} \operatorname{Pic}(Y) \rightarrow \mathbb{Z}^{n}$ described in problem 4 is an isomorphism. Deduce that $\mathbb{C}[x, y]^{G}$ is a UFD iff the Cartan matrix constructed from the graph Γ has determinant ± 1 (in fact this determinant is always positive, so the option for it to equal -1 is not realized). Here Cartan matrix $C=C_{\Gamma}$ is given by:

[^0]$C_{i i}=2, C_{i j}=-1$ if $i \neq j$ are connected by an edge in the graph Γ and $C_{i j}=0$ otherwise.
[In fact, the graph Γ is necessarily one of the simply-laced Dynkin graphs appearing in the classification of compact connected simple groups. The only such graph for which $\operatorname{det}\left(C_{\Gamma}\right)=1$ (this condition is equivalent to the corresponding simple Lie group being simply-connected) corresponds to the largest simple connected compact Lie group E_{8}. The group G in this case is the binary icosahedral group, i.e. the preimage in the special unitary group $S U(2)$ of the group of symmetries of a regular icosahedron under the homomorphism $S U(2) \rightarrow P S U(2) \cong S O(3)$. The surface X is isomorphic to the surface in \mathbb{A}^{3} given by the equation $x^{2}+y^{3}+z^{5}=0$, as described by Felix Klein in his book "Lectures on the icosahedron and solution of the fifth degree equations" (1884); the resolution Y can be obtained from X by 8 blow-ups, cf. Exercise V.5.8 in Harthshorne.]

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ This is in fact true for not necessarily quasi-projective varieties, and even more generally, see e.g. Exercise II.5.15. in Harthshorne.
 ${ }^{2}$ We have only discussed how to associate a Weil divisor to a rational function in the cases when X is a curve or when X is smooth. In this problem you only need to use that such a construction exists for normal irreducible varieties and that it is compatible with restriction to an open subset.

