HOMEWORK 10 FOR 18.725, FALL 2015 DUE THURSDAY, DECEMBER 3 BY 1PM.

(1) Suppose that Z is a closed subvariety in an affine variety X, such that $U=X \backslash Z$ is also affine. Show that for any point $x \in Z$ we have $\operatorname{dim}_{x}(Z) \geq$ $\operatorname{dim}_{x}(X)-1$.
[Hint: reduce to irreducible X, Z, then assuming $\operatorname{dim}(Z) \leq \operatorname{dim}(X)-2$ construct a map from the normalization of X to $U]$.
(2) Two smooth subvarieties Y, Z in a smooth n-dimensional variety X are said to intersect transversely at a point $x \in Y \cap Z$ is $T_{x}(Y) \cap T_{x}(Z)$ has dimension $\operatorname{dim}_{x}(Y)+\operatorname{dim}_{x}(Z)-\operatorname{dim}_{x}(X)$. They intersect transversely if they intersect transversely at every point.
(a) Show that if Y and Z as above intersect transversely then $Y \cap Z$ is a smooth subvariety and we have $I_{Y \cap Z}=I_{Y}+I_{Z}$.
(b) If Y and Z intersect transversely then $I_{Y \cup Z}=I_{Y} \cdot I_{Z}$.
(3) For a locally free coherent sheaf \mathcal{E} of $\operatorname{rank} r$ on a variety X we write $\operatorname{det}(\mathcal{E})$ for the class of $\Lambda^{r}(\mathcal{E}) \in \operatorname{Pic}(X)$.
(a) Show that for locally free coherent sheaves $\mathcal{E}_{1}, \mathcal{E}_{2}$ of ranks r_{1}, r_{2} we have $\operatorname{det}\left(\mathcal{E}_{1} \otimes \mathcal{E}_{2}\right)=\operatorname{det}\left(\mathcal{E}_{1}\right)^{r_{2}} \operatorname{det}\left(\mathcal{E}_{2}\right)^{r_{1}}$.
[Hint: choose local trivializations, then use a similar identity for determinants of matrices].
(b) Let $L \in \operatorname{Pic}(\operatorname{Gr}(k, n))$ be the pull-back of $\mathcal{O}(1)$ under the Plücker embedding. Find N such that $K_{G r(k, n)}=L^{N}$.
(c) Find a map $\mathbb{P}^{n-k} \rightarrow G r(k, n)$ such that the pull-back of L is isomorphic to $\mathcal{O}_{\mathbb{P}^{n-k}}(1)$. Conclude that $L \in \operatorname{Pic}(\operatorname{Gr}(k, n))$ is a primitive element, i.e. $L \neq\left(L^{\prime}\right)^{n}$ for any $L^{\prime}, n>1$.
[In fact $\operatorname{Pic}(\operatorname{Gr}(k, n)) \cong \mathbb{Z}$, so part (c) shows that L is a generator of the Picard group].
(4) Let X be a complete irreducible curve over a field k of characteristic different from 2. Assume that $f: X \rightarrow \mathbb{P}^{1}$ is a degree two map $\frac{1}{1}$ and $i: X \rightarrow X$ is an involution, $f \circ i=f(i \neq i d)$. Show that every section σ of K_{X} satisfies $i^{*}(\sigma)=-\sigma$.
[Hint: if $i^{*}(\sigma)=\sigma$ then σ vanishes on the ramification divisor, applying the Riemann-Hurwitz formula leads to a contradiction].
(5) The dual variety \check{X} to a smooth closed subvariety $X \subset \mathbb{P}^{n}$ is the set of all points in $\left(\mathbb{P}^{n}\right)^{*}$ parametrizing a hyperplane tangent to X, i.e. containing the tangent space to some point in X. If X is not smooth then \check{X} is defined as the closure of the set of hyperplanes tangent to a smooth point of X.
(a) Describe \check{X} if X is the image of Segre embedding $\mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{n m+n+m}$.
(b) Check that if $X \subset \mathbb{P}^{2}$ is a smooth degree n curve over a field of characteristic zero, then \check{X} is a curve of degree $n(n-1)$.

[^0](c) (Optional problem) Check that if $X \subset \mathbb{P}^{2}$ is a smooth curve of degree 3 , then X has 9 simple cusp singularities, i.e. the completed local ring at each singular point is isomorphic to $k[[x, y]] /\left(y^{2}-x^{3}\right)$.
(6) (Optional problem) This problem introduces an important construction, the deformation to normal cone. Let $X=\operatorname{Spec}(A)$ be an affine variety and Z a closed subvariety. Let \hat{A} be a \mathbb{Z}-graded ring, whose graded components are given by $\hat{A}_{n}=I_{Z}^{n}$ for $n>0$ and $\hat{A}_{n}=A$ for $n<0$, where multiplication is induced by the multiplication in A, set $\tilde{X}=\operatorname{Spec}(\hat{A})$. Let $t \in \hat{A}$ be the element $1_{A} \in A_{-1}=A$.
(a) Show that the embedding $k[t] \rightarrow \hat{A}$ induces a map $\pi: \hat{X} \rightarrow \mathbb{A}^{1}$ such that $\pi^{-1}\left(\mathbb{A}^{1} \backslash 0\right) \cong X \times\left(\mathbb{A}^{1} \backslash 0\right)$ and $\pi^{-1}(0)=\operatorname{Spec}\left(g r(A)_{\text {red }}\right)$, where $g r(A)=\bigoplus_{n}\left(I_{Z}^{n} / I_{Z}^{n+1}\right)$ and the subscript "red" denotes the quotient by the ideal of nilpotents.
(b) Assume that $Z=\{z\}$ is a nonisolated point. Show that \hat{X} is canonically isomorphic to an open subvariety in the blow up of $X \times \mathbb{A}^{1}$ at $(z, 0)$.
(c) Generalize the definition of \hat{X} to nonaffine varieties.
(d) The blow up of a closed subvariety Z in an affine variety X is defined as follows. If $Z=\mathbb{A}^{k}$ is a linear subspace in $\mathbb{A}^{n}=\mathbb{A}^{k} \times \mathbb{A}^{n-k}$, then $B l_{Z}(X)$ is the product of \mathbb{A}^{k} by the blowup of 0 in \mathbb{A}^{n-k}. In general we can embed X into \mathbb{A}^{n} so that $Z=\mathbb{A}^{k} \cap X, I_{Z}=I_{\mathbb{A}^{k}}+I_{X}$. Then $B l_{Z}(X)$ is the closure of $X \cap\left(\mathbb{A}^{n} \backslash \mathbb{A}^{k}\right)$ in $B l_{\mathbb{A}^{k}}\left(\mathbb{A}^{n}\right)$. One can show that the closure does not depend on the auxilliary choices. Generalize part (b) to this setting.

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ A curve X for which such an f exists is called hyperelliptic.

