HOMEWORK 1 FOR 18.725, FALL 2015

DUE TUESDAY, SEPTEMBER 15 BY 1PM.

(1) Describe the sets of maximal ideals in the rings $\mathbb{R}[x], \mathbb{F}_{q}[x]$.

Hint: The answer is a quotient of \mathbb{C}, respectively, $\overline{\mathbb{F}}_{q}$ by an equivalence relation.
(2) Let $k=\overline{\mathbb{Q}}$ and $R=k\left[x_{1}, \ldots, x_{n}, \ldots\right]$ be the ring of polynomials in infinitely many variables. For $\mathbf{a}=\left(a_{i}\right) \in \prod_{i=1}^{\infty} k$ we have a homomorphism $R \rightarrow k$ sending x_{i} to a_{i}, let $\mathfrak{m}_{\mathbf{a}}$ be its kernel. Find an example of a maximal ideal in R which is not of the form $\mathfrak{m}_{\mathbf{a}}$ for any $\mathbf{a} \in \prod_{i=1}^{\infty} k$.
(3) Show that $k\left[\mathbb{A}^{2} \backslash\{0\}\right]=k\left[\mathbb{A}^{2}\right]$. Conclude that $\mathbb{A}^{2} \backslash\{0\}$ is not affine.
[Hint: Use the covering by two affine open subsets given by $x \neq 0$ and $y \neq 0$, where x, y are coordinates on $\left.\mathbb{A}^{2}\right]$.

MIT OpenCourseWare
http://ocw.mit.edu

18.725 Algebraic Geometry

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

