7 Structure of finite dimensional algebras

In this section we return to studying the structure of finite dimensional algebras. Throughout the section, we work over an algebraically closed field k (of any characteristic).

7.1 Projective modules

Let A be an algebra, and P be a left A-module.
Theorem 7.1. The following properties of P are equivalent:
(i) If $\alpha: M \rightarrow N$ is a surjective morphism, and $\nu: P \rightarrow N$ any morphism, then there exists a morphism $\mu: P \rightarrow M$ such that $\alpha \circ \mu=\nu$.
(ii) Any surjective morphism $\alpha: M \rightarrow P$ splits, i.e., there exists $\mu: P \rightarrow M$ such that $\alpha \circ \mu=\mathrm{id}$.
(iii) There exists another A-module Q such that $P \oplus Q$ is a free A-module, i.e., a direct sum of copies of A.
(iv) The functor $\operatorname{Hom}_{A}(P$, ?) on the category of A-modules is exact.

Proof. To prove that (i) implies (ii), take $N=P$. To prove that (ii) implies (iii), take M to be free (this can always be done since any module is a quotient of a free module). To prove that (iii) implies (iv), note that the functor $\operatorname{Hom}_{A}(P, ?)$ is exact if P is free (as $\operatorname{Hom}_{A}(A, N)=N$), so the statement follows, as if the direct sum of two complexes is exact, then each of them is exact. To prove that (iv) implies (i), let K be the kernel of the map α, and apply the exact functor $\operatorname{Hom}_{A}(P, ?$) to the exact sequence

$$
0 \rightarrow K \rightarrow M \rightarrow N \rightarrow 0 .
$$

Definition 7.2. A module satisfying any of the conditions (i)-(iv) of Theorem 7.1 is said to be projective.

7.2 Lifting of idempotents

Let A be a ring, and $I \subset A$ a nilpotent ideal.
Proposition 7.3. Let $e_{0} \in A / I$ be an idempotent, i.e., $e_{0}^{2}=e_{0}$. There exists an idempotent $e \in A$ which is a lift of e_{0} (i.e., it projects to e_{0} under the reduction modulo I). This idempotent is unique up to conjugation by an element of $1+I$.

Proof. Let us first establish the statement in the case when $I^{2}=0$. Note that in this case I is a left and right module over A / I. Let e_{*} be any lift of e_{0} to A. Then $e_{*}^{2}-e_{*}=a \in I$, and $e_{0} a=a e_{0}$. We look for e in the form $e=e_{*}+b, b \in I$. The equation for b is $e_{0} b+b e_{0}-b=a$.

Set $b=\left(2 e_{0}-1\right) a$. Then

$$
e_{0} b+b e_{0}-b=2 e_{0} a-\left(2 e_{0}-1\right) a=a,
$$

so e is an idempotent. To classify other solutions, set $e^{\prime}=e+c$. For e^{\prime} to be an idempotent, we must have $e c+c e-c=0$. This is equivalent to saying that ece $=0$ and $(1-e) c(1-e)=0$, so $c=e c(1-e)+(1-e) c e=[e,[e, c]]$. Hence $e^{\prime}=(1+[c, e]) e(1+[c, e])^{-1}$.

Now, in the general case, we prove by induction in k that there exists a lift e_{k} of e_{0} to A / I^{k+1}, and it is unique up to conjugation by an element of $1+I^{k}$ (this is sufficient as I is nilpotent). Assume it is true for $k=m-1$, and let us prove it for $k=m$. So we have an idempotent $e_{m-1} \in A / I^{m}$, and we have to lift it to A / I^{m+1}. $\operatorname{But}\left(I^{m}\right)^{2}=0$ in A / I^{m+1}, so we are done.

Definition 7.4. A complete system of orthogonal idempotents in a unital algebra B is a collection of elements $e_{1}, \ldots, e_{n} \in B$ such that $e_{i} e_{j}=\delta_{i j} e_{i}$, and $\sum_{i=1}^{n} e_{i}=1$.

Corollary 7.5. Let $e_{01}, \ldots, e_{0 m}$ be a complete system of orthogonal idempotents in A / I. Then there exists a complete system of orthogonal idempotents $e_{1}, \ldots, e_{m}\left(e_{i} e_{j}=\delta_{i j} e_{i}, \sum e_{i}=1\right)$ in A which lifts $e_{01}, \ldots, e_{0 m}$.

Proof. The proof is by induction in m. For $m=2$ this follows from Proposition 7.3. For $m>2$, we lift e_{01} to e_{1} using Proposition 7.3, and then apply the induction assumption to the algebra $\left(1-e_{1}\right) A\left(1-e_{1}\right)$.

7.3 Projective covers

Obviously, every finitely generated projective module over a finite dimensional algebra A is a direct sum of indecomposable projective modules, so to understand finitely generated projective modules over A, it suffices to classify indecomposable ones.

Let A be a finite dimensional algebra, with simple modules M_{1}, \ldots, M_{n}.
Theorem 7.6. (i) For each $i=1, \ldots, n$ there exists a unique indecomposable finitely generated projective module P_{i} such that $\operatorname{dim} \operatorname{Hom}\left(P_{i}, M_{j}\right)=\delta_{i j}$.
(ii) $A=\oplus_{i=1}^{n}\left(\operatorname{dim} M_{i}\right) P_{i}$.
(iii) any indecomposable finitely generated projective module over A is isomorphic to P_{i} for some i.

Proof. Recall that $A / \operatorname{Rad}(A)=\oplus_{i=1}^{n} \operatorname{End}\left(M_{i}\right)$, and $\operatorname{Rad}(A)$ is a nilpotent ideal. Pick a basis of M_{i}, and let $e_{i j}^{0}=E_{j j}^{i}$, the rank 1 projectors projecting to the basis vectors of this basis $(j=$ $1, \ldots, \operatorname{dim} M_{i}$). Then $e_{i j}^{0}$ are orthogonal idempotents in $A / \operatorname{Rad}(A)$. So by Corollary 7.5 we can lift them to orthogonal idempotents $e_{i j}$ in A. Now define $P_{i j}=A e_{i j}$. Then $A=\oplus_{i} \oplus_{j=1}^{\operatorname{dim} M_{i}} P_{i j}$, so $P_{i j}$ are projective. Also, we have $\operatorname{Hom}\left(P_{i j}, M_{k}\right)=e_{i j} M_{k}$, so $\operatorname{dim} \operatorname{Hom}\left(P_{i j}, M_{k}\right)=\delta_{i k}$. Finally, $P_{i j}$ is independent of j up to an isomorphism, as $e_{i j}$ for fixed i are conjugate under A^{\times}by Proposition 7.3; thus we will denote $P_{i j}$ by P_{i}.

We claim that P_{i} is indecomposable. Indeed, if $P_{i}=Q_{1} \oplus Q_{2}$, then $\operatorname{Hom}\left(Q_{l}, M_{j}\right)=0$ for all j either for $l=1$ or for $l=2$, so either $Q_{1}=0$ or $Q_{2}=0$.

Also, there can be no other indecomposable finitely generated projective modules, since any such module has to occur in the decomposition of A. The theorem is proved.

References

[BGP] J. Bernstein, I. Gelfand, V. Ponomarev, Coxeter functors and Gabriel's theorem, Russian Math. Surveys 28 (1973), no. 2, 17-32.
[Cu] C. Curtis, Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer, AMS, 1999.
[CR] C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, AMS, 2006.
[FH] W. Fulton and J. Harris, Representation Theory, A first course, Springer, New York, 1991.
[Fr] Peter J. Freyd, Abelian Categories, an Introduction to the Theory of Functors. Harper and Row (1964).
[McL] S. MacLane, Categories for a working Mathematician: 2nd Ed., Graduate Texts in Mathematics 5, Springer, 1998.

MIT OpenCourseWare
http://ocw.mit.edu

18.712 Introduction to Representation Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

