1. 18.712 TAKEHOME ASSIGNMENT

- 1. Let Q be a quiver, i.e. a finite oriented graph. Let A(Q) be the path algebra of Q over a field k, i.e. the algebra whose basis is formed by paths in Q (compatible with orientations, and including paths of length 0 from a vertex to itself), and multiplication is concatenation of paths (if the paths cannot be concatenated, the product is zero).
 - (i) Represent the algebra of upper triangular matrices as A(Q).
- (ii) Show that A(Q) is finite dimensional iff Q is acyclic, i.e. has no oriented cycles.
- (iii) For any acyclic Q, decompose A(Q) (as a left module) in a direct sum of indecomposable modules.
- (iv) Find a condition on Q under which A(Q) is isomorphic to $A(Q)^{op}$, the algebra A(Q) with opposite multiplication. Use this to give an example of an algebra A that is not isomorphic to A^{op} .
- 2. Classify irreducible representations of the group $GL_2(\mathbb{F}_q) \ltimes \mathbb{F}_q^2$ of affine transformations of the 2-dimensional space over a finite field, and find their characters.
- 3. Compute the decomposition into irreducible representations of all the induced representations from the cyclic subgroups of the preimage Γ of $A_5 \subset SO(3)$ (the group corresponding to the affine Dynkin diagram \tilde{E}_8).
- 4. Find the multiplicities of the irreducible representations of sl(2) in $V^{\otimes n}$, where V is the 2-dimensional vector representation.

MI	ТΟ	penC	our	seV	Vare
htt	p://c	cw.n	nit.e	du	

18.712 Introduction to Representation Theory Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.