1. 18.712 TAKEHOME ASSIGNMENT

1. Let Q be a quiver, i.e. a finite oriented graph. Let $A(Q)$ be the path algebra of Q over a field k, i.e. the algebra whose basis is formed by paths in Q (compatible with orientations, and including paths of length 0 from a vertex to itself), and multiplication is concatenation of paths (if the paths cannot be concatenated, the product is zero).
(i) Represent the algebra of upper triangular matrices as $A(Q)$.
(ii) Show that $A(Q)$ is finite dimensional iff Q is acyclic, i.e. has no oriented cycles.
(iii) For any acyclic Q, decompose $A(Q)$ (as a left module) in a direct sum of indecomposable modules.
(iv) Find a condition on Q under which $A(Q)$ is isomorphic to $A(Q)^{o p}$, the algebra $A(Q)$ with opposite multiplication. Use this to give an example of an algebra A that is not isomorphic to $A^{o p}$.
2. Classify irreducible representations of the group $G L_{2}\left(\mathbb{F}_{q}\right) \ltimes \mathbb{F}_{q}^{2}$ of affine transformations of the 2-dimensional space over a finite field, and find their characters.
3. Compute the decomposition into irreducible representations of all the induced representations from the cyclic subgroups of the preimage Γ of $A_{5} \subset$ $S O(3)$ (the group corresponding to the affine Dynkin diagram \tilde{E}_{8}).
4. Find the multiplicities of the irreducible representations of $s l(2)$ in $V^{\otimes n}$, where V is the 2-dimensional vector represenation.

MIT OpenCourseWare
http://ocw.mit.edu
18.712 Introduction to Representation Theory Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

