A FEW ELEMENTARY FACTS ABOUT ELLIPTIC CURVES

1. Introduction

In our paper we shall present a number of facts regarding the doubly periodic meromorphic functions, also known as elliptic functions. We shall focus on the elliptic functions of order two and, in particular, on the Weierstass \mathcal{P}-function. The doubly periodic meromorphic functions can be looked at as meromorphic functions defined on complex tori. This is because, as a topological space, a complex torus is the quotient of the complex plane over an integer lattice.

2. Periodic functions

Definition 1. A meromorphic function f is said to be periodic if and only if there exists a nonzero $\omega \in \mathbb{C}$ such that $f(z+\omega)=f(z)$, for all $z \in \mathbb{C}$. The complex number ω is called period.

As a first observation, we may say that if ω is a period, then any integer multiple $n \omega$ is also a period. Also, if there exist two periods ω_{1} and ω_{2}, then $n_{1} \omega_{1}+n_{2} \omega_{2}$ is also a period, for all $n_{1}, n_{2} \in \mathbb{Z}$. Given a meromorphic function f, define M to be the set of all its periods (including 0). From the above observations, we deduce that M is a Z-module.

If f is a non-constant meromorphic function, the module M containing all its periods cannot have a accumulation point, since otherwise f would be a constant. Therefore each point in M is isolated. In order words, M is a discrete module.

We have the following theorem regarding the module M:
Theorem 1. If M is the module of periods of a meromorphic function f, it must have one of the following forms:

- $M=\{0\}$.
- $M=\{n \omega \mid n \in \mathbb{Z}\}$, for some nonzero complex value ω.
- $M=\left\{n_{1} \omega_{1}+n_{2} \omega_{2} \mid n_{1}, n_{2} \in \mathbb{Z}\right\}$, for some nonnzero complex values $\omega_{1}, \omega_{2} \in \mathbb{C}$, whose ratio is not real.

Proof. Let us suppose that M has nonzero elements. Then take a nonzero element ω_{1} of smallest absolute value. This is always possible, since in any disk or radius $\leq r$, there are only finitely many elements of M. Define $A=\left\{n \omega_{1} \mid n \in \mathbb{Z}\right\}$. We have $A \subset M$. If $M \neq A$, choose ω_{2} the smallest element (in terms of absolute value) in $M-A$. First, note that ω_{1} / ω_{2} cannot be real, otherwise, choose an integer m such that $m \leq \omega_{1} / \omega_{2}<m+1$. It follows that $\left|\omega_{1}-m \omega_{2}\right|<\left|\omega_{1}\right|$ which contradicts the minimality of ω_{1}.

Finally, let us prove that $M=\left\{n_{1} \omega_{1}+n_{2} \omega_{2} \mid n_{1}, n_{2} \in \mathbb{Z}\right\}$. We remark that since ω_{1} / ω_{2} is not real, any complex number can be written uniquely in the form $t \omega_{1}+s \omega_{2}$, where s and t are real numbers. In order to see this clearly, it is enough to look at ω_{1} and ω_{2} as vectors in the two-dimensional real vector space. Since ω_{1} and ω_{2} are independent as vectors, it becomes obvious why any complex number can be written uniquely as a linear combination of ω_{1} and ω_{2} with real coefficients. Now, take an arbitrary element x of M and write it in the form $s \omega_{1}+t \omega_{2}$, where s and t are real numbers. Choose integers n_{1} and n_{2} such that $\left|s-n_{1}\right|<1 / 2$ and $\left|t-n_{2}\right|<1 / 2$. It follows easily that $\left|x-n_{1} \omega_{1}-n_{2} \omega_{2}\right|<1 / 2\left|\omega_{1}\right|+1 / 2\left|\omega_{2}\right| \leq\left|\omega_{2}\right|$ (the first inequality is strict, since ω_{1} / ω_{2} is nonreal). Because of the way ω_{2} was chosen, it follows that $x=n \omega_{1}$ or $x=n_{1} \omega_{1}+n_{2} \omega_{2}$. Hence, $M=\left\{n_{1} \omega_{1}+n_{2} \omega_{2} \mid n_{1}, n_{2} \in \mathbb{Z}\right\}$.

3. Elliptic Functions and Unimodular Forms

Definition 2. We shall call a meromorphic function f elliptic iff its module of periods M is a linear linear combination of two periods ω_{1} and ω_{2}, such that ω_{1} / ω_{2} is nonreal (i.e. the third case of the previous theorem).

The pair $\left(\omega_{1}, \omega_{2}\right)$ mentioned above is a basis for the module M. In this section we shall discuss about the possible bases of a module of periods M. Suppose $\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}\right)$ is another basis of M. Then

$$
\begin{aligned}
\omega_{1}^{\prime} & =m_{1} \omega_{1}+n_{1} \omega_{2} \\
\omega_{2}^{\prime} & =m_{2} \omega_{1}+n_{2} \omega_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \omega_{1}=m_{1}^{\prime} \omega_{1}+n_{1}^{\prime} \omega_{2} \\
& \omega_{2}=m_{2}^{\prime} \omega_{1}+n_{2}^{\prime} \omega_{2}
\end{aligned}
$$

Using matrices, we can write

$$
\begin{aligned}
& \left(\begin{array}{ll}
\omega_{1}^{\prime} & {\overline{\omega^{\prime}}}_{1} \\
\omega_{2}^{\prime} & {\overline{\omega^{\prime}}}_{2}
\end{array}\right)=\left(\begin{array}{ll}
m_{1} & n_{1} \\
m_{2} & n_{2}
\end{array}\right)\left(\begin{array}{ll}
\omega_{1} & \bar{\omega}_{1} \\
\omega_{2} & \bar{\omega}_{2}
\end{array}\right) \\
& \left(\begin{array}{ll}
\omega_{1} & \bar{\omega}_{1} \\
\omega_{2} & \bar{\omega}_{2}
\end{array}\right)=\left(\begin{array}{ll}
m_{1}^{\prime} & n_{1}^{\prime} \\
m_{2}^{\prime} & n_{2}^{\prime}
\end{array}\right)\left(\begin{array}{ll}
\omega_{1}^{\prime} & {\overline{\omega^{\prime}}}_{1} \\
\omega_{2}^{\prime} & \bar{\omega}_{2}^{\prime}
\end{array}\right)
\end{aligned}
$$

Consequently, we have

$$
\left(\begin{array}{ll}
\omega_{1} & \bar{\omega}_{1} \\
\omega_{2} & \bar{\omega}_{2}
\end{array}\right)=\left(\begin{array}{ll}
m_{1}^{\prime} & n_{1}^{\prime} \\
m_{2}^{\prime} & n_{2}^{\prime}
\end{array}\right)\left(\begin{array}{ll}
m_{1} & n_{1} \\
m_{2} & n_{2}
\end{array}\right)\left(\begin{array}{ll}
\omega_{1} & \bar{\omega}_{1} \\
\omega_{2} & \bar{\omega}_{2}
\end{array}\right)
$$

We have $\omega_{1} \overline{\omega_{2}}-\omega_{2} \overline{\omega_{1}} \neq 0$, because otherwise ω_{1} / ω_{2} is real, which contradicts our assumption. It follows that

$$
\left(\begin{array}{ll}
m_{1}^{\prime} & n_{1}^{\prime} \\
m_{2}^{\prime} & n_{2}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
m_{1} & n_{1} \\
m_{2} & n_{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

and, since all the entries are integral,

$$
\left|\begin{array}{ll}
m_{1}^{\prime} & n_{1}^{\prime} \\
m_{2}^{\prime} & n_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
m_{1} & n_{1} \\
m_{2} & n_{2}
\end{array}\right|= \pm 1
$$

Therefore, from $\left(\omega_{1}, \omega_{2}\right)$ one can obtain $\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}\right)$ via a linear transformation of determinant 1 , which is usually called unimodular transformation. We have thus seen that any two bases of the same module M are related to one another by a unimodular transformation.

From all the possible bases of a module, one can choose a particular one, with certain characteristics which will be called cannonical basis. This fact is the object of the following

Theorem 2. Given a module M, there exists a basis $\left(\omega_{1}, \omega_{2}\right)$ such that the ratio $\sigma=\omega_{1} / \omega_{2}$ has the following properties:

- Im $\sigma>0$
- $-1 / 2 \leq \operatorname{Re} \sigma \leq 1 / 2$
- $|\sigma| \geq 1$
- If $|\sigma|=1$, then Re $\sigma \geq 0$

Also, σ defined above is uniquely determined by these conditions, up to a choice of two, four or six corresponding bases.

4. General Properties of Elliptic Functions

We shall use a convenient notation: $z_{1} \equiv z_{2}$ iff $z_{1}-z_{2}$ belongs to M (in other words, iff $z_{1}-z_{2}=n_{1} \omega_{1}+n_{2} \omega_{2}$, for two integers n_{1} and n_{2}). Let f be a elliptic function with $\left(\omega_{1}, \omega_{2}\right)$ as basis of the module of periods. Since f is doubly-periodic, it is entirely determined by its values on a parallelogram P_{a} whose vertices are $a, a+\omega_{1}, a+\omega_{2}$ and $a+\omega_{1}+\omega_{2}$. The complex value a can be chosen arbitrarily.

Theorem 3. If the elliptic funtion f has no poles, it is a constant.
Proof. If f has no poles, it is bounded in a parallelogram P_{a}. Since f is doubly periodic, it is bounded on the whole complex plane. By Liouville's theorem, f must be a constant function.

As we have seen before, the set of poles of f has no accumulation point. It follows that in any parallelogram P_{a} there are finitely many poles. When we shall refer to the poles of f, we shall mean the set of mutually incongruent poles.

Theorem 4. The sum of residues of an elliptic function f is zero.
Proof. Choose $a \in \mathbb{C}$ such that the parallelogram P_{a} does not contain any pole of f. Consider the boundary ∂P_{a} of P_{a} traced in the positive sense. Then the integral

$$
\frac{1}{2 \pi i} \int_{\partial P_{a}} f(z)
$$

equals the sum of residues of f. But the sum equals 0 , since the integrals over the opposite sides of the parallelogram cancel each other.

A simple corollary ${ }^{1}$ of this theorem is that an elliptic function cannot have a single simple pole, otherwise, the sum of residues would not equal 0 .

Theorem 5. A nonconstant elliptic function f has the same number of poles as it has zeroes. (Every pole or zero is counted according to its multiplicity)
Proof. We may consider the function f^{\prime} / f which has simple poles wherever f has a pole or a zero. The residue of a pole α of f^{\prime} / f equals its multiplicity in f if α is a zero of f, and minus its multiplicity in f, if α is a pole of f. Applying now theorem 4 to the function f^{\prime} / f, we get the desired result.

Since $f(z)-c$ and $f(z)$ have the same number of poles, we conclude that they must have the same number of zeroes.

Definition 3. Given an elliptic function f, the number of mutually incongruent roots of $f(z)=c$ is called the order of the elliptic function.

Obviously, the order does not depend on the choice of c.
Theorem 6. Suppose the nonconstant elliptic function f has the zeroes a_{1}, \cdots, a_{n} and poles b_{1}, \cdots, b_{n} (multiple roots and poles appear multiple times). Then $a_{1}+\cdots+a_{n} \equiv b_{1}+\cdots+b_{n}(\bmod M)$.

Proof. Consider all a_{i} and b_{i} in the parallelogram P_{a} for some a. We consider the following integral on ∂P_{a} :

$$
\frac{1}{2 \pi i} \int_{\partial P_{a}} \frac{z f^{\prime}(z)}{f(z)} d z
$$

Given the properties of the poles and zeroes of f^{\prime} / f mentioned above, we deduce that f has a zero (or a pole) at t, of order $k \in \mathbb{Z}_{>0}$, iff $z f^{\prime} / f$ has a simple pole at t with residue $n t$ (or $-n t$). It follows that the integral equals $a_{1}+\cdots+a_{n}-b_{1}-\cdots-b_{n}$. Now, we must prove that the integral is in M. For this purpose, we write the integral on the pairs of two opposite sides:

$$
\frac{1}{2 \pi i}\left(\int_{a}^{a+\omega_{1}} \frac{z f^{\prime}(z)}{f(z)} d z-\int_{a+\omega_{2}}^{a+\omega_{1}+\omega_{2}} \frac{z f^{\prime}(z)}{f(z)} d z\right)=\frac{-\omega_{2}}{2 \pi i} \int_{a}^{a+\omega_{1}} \frac{f^{\prime}(z)}{f(z)} d z
$$

Also,

$$
\frac{-\omega_{2}}{2 \pi i} \int_{a}^{a+\omega_{1}} \frac{f^{\prime}(z)}{f(z)} d z=\frac{-\omega_{2}}{2 \pi i} \int_{\partial D} \frac{1}{w} d w
$$

where D is the curve given by $f(z)$ when z varies from a to $a+\omega_{1} \cdot \frac{1}{2 \pi i} \int_{\partial D} \frac{1}{w} d w$ is an integer ($=$ the winding number with respect to 0). Taking into account both pairs of opposite sides of P_{a}, we get the desired result.

[^0]
5. The Weierstass \mathcal{P}-function

The simplest example of an elliptic function is of order 2. As we have seen before, there is no elliptic function of order 1. An elliptic function of degree 2 can have either one pole of degree 2 or two distinct simple poles. We shall analyse, following Weierstass, the case of an elliptic function with a double pole.

We may place the pole at the origin and consider the coefficient of z^{-2} as being 1 (translations and multiplications by constants do not change essential properties of elliptic functions). If we consider $\mathrm{f}(\mathrm{z})-\mathrm{f}(-\mathrm{z})$ we get a elliptic function that has no singular part. (The function $f(z)-f(-z)$ could only have a single simple pole at 0 , but this is impossible). Hence, $f(z)-f(-z)$ is constant and setting $z=\omega_{1} / 2$, we get that this constant is zero. Therefore, $f(z)=f(-z)$ and we can write

$$
\mathcal{P}(z)=z^{-2}+a_{0}+a_{1} z^{2}+\ldots
$$

We may suppose that $a_{0}=0$, because adding/substracting a constant from f is irrelevant. What we get is the so called Weierstass \mathcal{P}-function. This elliptic function can be written as

$$
\begin{equation*}
\mathcal{P}(z)=z^{-2}+a_{1} z^{2}+a_{2} z^{4}+\ldots \tag{1}
\end{equation*}
$$

The existence of a elliptic function of order 2 has not yet been proven. We shall prove that the Weierstrass \mathcal{P}-function is uniquely determined for a basis $\left(\omega_{1}, \omega_{2}\right)$, being given by the formula:

$$
\begin{equation*}
\mathcal{P}(z)=\frac{1}{z^{2}}+\sum_{\omega \neq 0}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) \tag{2}
\end{equation*}
$$

where the summation is over all $\omega=n_{1} \omega_{1}+n_{2} \omega_{2}, \omega \neq 0$. We shall prove first that this sum is convergent. For every $|\omega|>2|z|$, we have

$$
\left|\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right|=\left|\frac{z(2 \omega-z)}{\omega^{2}(z-\omega)^{2}}\right| \leq \frac{10|z|}{|\omega|^{3}}
$$

This is because $|2 \omega-z|<5 / 2|\omega|$ and $|z-\omega| \geq|\omega|-|z| \geq|\omega| / 2$.
We conclude that in order for the sum (2) to converge, it is enough to prove that the sum

$$
\sum_{\omega \neq 0} \frac{1}{|\omega|^{3}}<\infty
$$

Also, since ω_{1} / ω_{2} is not real $\left|n_{1} \omega_{1}+n_{2} \omega_{2}\right|=\left|\omega_{2}\right|\left|n_{1} \omega_{1} / \omega_{2}+n_{2}\right| \geq c\left|n_{1}\right|$ for some positive real constant c (for any integers n_{1}, n_{2}). Similarly, we find a constant d such that $\left|n_{1} \omega_{1}+n_{2} \omega_{2}\right| \geq d\left|n_{2}\right|$, for any integers n_{1}, n_{2}. In conclusion, $\left|n_{1} \omega_{1}+n_{2} \omega_{2}\right| \geq k\left(\left|n_{1}\right|+\left|n_{2}\right|\right)$, where $k=c d /(c+d) \geq 0$. Since there are exactly $4 n$ ordered pairs $\left(n_{1}, n_{2}\right)$ of integers such that $\left|n_{1}\right|+\left|n_{2}\right|=$
n, we have

$$
\sum_{\omega \neq 0} \frac{1}{|\omega|^{3}}<\frac{1}{4 k^{3}} \sum_{1}^{\infty} \frac{1}{n^{2}} .
$$

We also need to prove that $\mathcal{P}(z)=\frac{1}{z^{2}}+\sum_{\omega \neq 0}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right)$ has periods ω_{1} and ω_{2}. We denote, for this purpose

$$
\begin{equation*}
f(z)=\frac{1}{z^{2}}+\sum_{\omega \neq 0}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) \tag{3}
\end{equation*}
$$

Since the series is absolutely convergent, we may differentiate term by term:

$$
f^{\prime}(z)=-\frac{2}{z^{3}}-\sum_{\omega \neq 0} \frac{2}{(z-\omega)^{3}}=-2 \sum_{\omega} \frac{1}{(z-\omega)^{3}}
$$

This series is also absolutely convergent, since if $|\omega|>2|z|$, we have

$$
\sum_{\omega}\left|\frac{1}{(z-\omega)^{3}}\right| \leq 16 \sum_{\omega} \frac{1}{|\omega|^{3}}
$$

and we deduce that (3) converges absolutely. Consequently, $f\left(z+\omega_{1}\right)-f(z)$ and $f\left(z+\omega_{2}\right)-f(z)$ are constant functions. By definition, f is even and, therefore, setting $z=-\omega_{1} / 2$ and $z=-\omega_{2} / 2$ we get that the constants are 0 . Therefore, $f\left(z+\omega_{1}\right)=f(z)$ and $f\left(z+\omega_{2}\right)=f(z)$, for all $z \in \mathbb{C}$. Hence, we proved that f is elliptic. If \mathcal{P} has the form in (1) and is doubly periodic, with periods ω_{1} and ω_{2}, it follows that $\mathcal{P}-f$ has no singular part, and is therefore constant. Since both \mathcal{P} and f have no constant term (i.e. the coefficient of z^{0} is 0), it follows that $\mathcal{P}=f$. Hence, we deduce that

$$
\mathcal{P}(z)=\frac{1}{z^{2}}+\sum_{\omega \neq 0}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right)
$$

and also that

$$
\mathcal{P}^{\prime}(z)=-2 \sum_{\omega} \frac{1}{(z-\omega)^{3}}
$$

6. The function $\zeta(z)$

Because \mathcal{P} has no residues, it is the derivative of a function $-\zeta(z)$, where

$$
\zeta(z)=\frac{1}{z}+\sum_{\omega \neq 0}\left(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega^{2}}\right)
$$

In order to prove that this series converges, we note that

$$
\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega^{2}}=\frac{z^{2}}{\omega^{2}(z-\omega)}
$$

Hence, if $|\omega|>2|z|$,

$$
\sum_{\omega \neq 0}\left|\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega^{2}}\right|=\sum\left|\frac{z}{\omega^{2}(z-\omega)}\right| \leq|z|^{2} \sum \frac{2}{|\omega|^{3}}
$$

and, consequently, the series converges absolutely.
Since $f\left(z+\omega_{i}\right)=f(z)$, for $i=1,2$ it follows that $\zeta\left(z+\omega_{i}\right)=\zeta(z)+\eta_{i}$, for $i=1,2$, where η_{i} are complex constants. These complex constants have a beautiful property which comes from the fact that

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\partial P_{a}} \zeta(z) d z=1 \tag{4}
\end{equation*}
$$

We prove first (4). If we look at (2), we deduce that

$$
\zeta(z)=z^{-1}-\frac{a_{1}}{3} z^{3}-\frac{a_{2}}{5} z^{5}+\cdots
$$

Now, if we evaluate the integral on two opposite sides of the parallelogram P_{a}, we get

$$
\frac{1}{2 \pi i}\left(\int_{a}^{a+\omega_{1}} \zeta(z) d z-\int_{a+\omega_{2}}^{a+\omega_{1}+\omega_{2}} \zeta(z) d z\right)=\frac{-\eta_{1} \omega_{2}}{2 \pi i}
$$

Integrating similarly on the other pair of opposide sides, we get that

$$
\frac{-\eta_{2} \omega_{1}}{2 \pi i}-\frac{-\eta_{1} \omega_{2}}{2 \pi i}=1
$$

and, finally,

$$
\eta_{1} \omega_{2}-\eta_{2} \omega_{1}=2 \pi i
$$

which is called Legendre's relation.

7. The Differential equation corresponding to \mathcal{P}

Using the definition of $\zeta(z)$, we have the following identity

$$
\frac{1}{z-\omega}+\frac{1}{w}+\frac{z}{\omega^{2}}=-\frac{z^{2}}{\omega^{3}}-\frac{z^{3}}{\omega^{4}}-\cdots
$$

Consequently, we can write

$$
\zeta(z)=\frac{1}{z}+\sum_{k=2}^{\infty} G_{k} z^{2 k-1}
$$

where by G_{k} we mean

$$
\begin{equation*}
G_{k}=\sum_{\omega \neq 0} \frac{1}{\omega^{2 k}} \tag{5}
\end{equation*}
$$

We note that $\zeta(z)$ has no terms of the form $z^{2 n}$ since \mathcal{P} is an even function (and ζ is odd). Differentiating (5), we get

$$
\mathcal{P}=\frac{1}{z^{2}}+\sum_{k=2}^{\infty}(2 k-1) G_{k} z^{2 k-2}
$$

Writing only the significant parts of the following functions, we have:

$$
\begin{gathered}
\mathcal{P}(z)=\frac{1}{z^{2}}+3 G_{2} z^{2}+5 G_{3} z^{4}+\cdots \\
\mathcal{P}^{\prime}(z)=-\frac{2}{z^{3}}+6 G_{2} z+20 G_{3} z^{3}+\cdots \\
\mathcal{P}^{\prime}(z)^{2}=\frac{4}{z^{6}}-\frac{24 G_{2}}{z^{2}}-80 G_{3}+\cdots \\
4 \mathcal{P}(z)^{3}=\frac{4}{z^{6}}+\frac{36 G_{2}}{z^{2}}+60 G_{3}+\cdots \\
60 G_{2} \mathcal{P}(z)=\frac{60 G_{2}}{z^{2}}+0+\cdots
\end{gathered}
$$

It follows that

$$
\mathcal{P}^{\prime}(z)^{2}-4 \mathcal{P}(z)^{3}+60 G_{2} \mathcal{P}(z)=-140 G_{3}+\cdots
$$

The left side of the last identity is an elliptic function and it does not have any singular part. Therefore, it must equal a constant. Setting $z=0$, we get that the constant is $-140 G_{3}$. Hence

$$
\mathcal{P}^{\prime}(z)^{2}-4 \mathcal{P}(z)^{3}+60 G_{2} \mathcal{P}(z)+140 G_{3}=0
$$

If we set $g_{2}=60 G_{2}$ and $g_{3}=140 G_{3}$, we get

$$
\mathcal{P}^{\prime}(z)^{2}=4 \mathcal{P}(z)^{3}-g_{2} \mathcal{P}(z)-g_{3}
$$

Provided that e_{1}, e_{2} and e_{3} are the complex roots of the polynomial $4 y^{3}-g_{2} y-g_{3}$, we can write

$$
\mathcal{P}^{\prime}(z)^{2}=4\left(\mathcal{P}(z)-e_{1}\right)\left(\mathcal{P}(z)-e_{2}\right)\left(\mathcal{P}(z)-e_{3}\right)
$$

Because \mathcal{P} is even and periodic, we have $\mathcal{P}\left(\omega_{1}-z\right)=\mathcal{P}(z)$. It follows that $\mathcal{P}^{\prime}\left(\omega_{1}-z\right)=\mathcal{P}^{\prime}(z)$. Hence $\mathcal{P}^{\prime}\left(\omega_{1} / 2\right)=0$. Similarly, $\mathcal{P}^{\prime}\left(\omega_{2} / 2\right)=0$. We have also, $\mathcal{P}^{\prime}\left(\omega_{1}+\omega_{2}-z\right)=\mathcal{P}^{\prime}(z)$, and therefore, $\mathcal{P}^{\prime}\left(\left(\omega_{1}+\omega_{2}\right) / 2\right)=0$. Since \mathcal{P}^{\prime} has only one pole (of order 3), it must have exactly three roots (counting multiplicity). On the other hand, the complex numbers $\omega_{1} / 2, \omega_{2} / 2$ and $\left(\omega_{1}+\omega_{2}\right) / 2$ are mutually incongruent. Therefore, they are the three distinct roots of \mathcal{P}^{\prime}.

For every e_{i} there exists d_{i} such that $\mathcal{P}\left(d_{i}\right)=e_{i}$ (this equation in fact has a double solutions, as we shall see below). Also, d_{i} are roots of \mathcal{P}^{\prime}. Therefore, if we apply \mathcal{P} on the set of roots of \mathcal{P}^{\prime} (a set which has three elements, $\omega_{1} / 2$, $\omega_{2} / 2$ and $\left.\left(\omega_{1}+\omega_{2}\right) / 2\right)$, we get the whole set $\left\{e_{1}, e_{2}, e_{3}\right\}$. Consequently, we may set $\mathcal{P}\left(\omega_{1} / 2\right)=e_{1}$ and $\mathcal{P}\left(\omega_{2} / 2\right)=e_{2}$ and $\mathcal{P}\left(\left(\omega_{1}+\omega_{2}\right) / 2\right)=e_{3}$.

Every root of $\mathcal{P}-e_{i}$ is also a root of \mathcal{P}^{\prime}. If, for instance, $e_{1}=e_{2}$, then the root d_{1} of $\mathcal{P}-e_{1}$ has multiplicity at least 2 in \mathcal{P}^{\prime} and, therefore, multiplicity at least 3 in $\mathcal{P}-e_{1}$, which is impossible for an elliptic curve of order 2 . In
conclusion, we derive an important observation, namely that all roots e_{i} are distinct.

References

[1] L.Ahlfors, Complex Analysis, (1979), 263-278

[^0]: ${ }^{1}$ Latin corona "garland" $>$ diminutive corolla $>$ corollarium "gratuity" $>$ English

