One-sided inverses

These notes are a small extension of the material on pages 53-55 of the text.
Definition 1. Suppose V and W are vector spaces over a field F, and $T \in$ $\mathcal{L}(V, W)$. A left inverse for T is a linear map $S \in \mathcal{L}(W, V)$ with the property that $S T=I_{V}$ (the identity map on V). That is, we require

$$
S T(v)=v \quad(\text { all } v \in V) .
$$

A right inverse for T is a linear map $S^{\prime} \in \mathcal{L}(W, V)$ with the property that $T S^{\prime}=I_{W}$ (the identity map on W). That is, we require

$$
T S^{\prime}(w)=w \quad(\text { all } w \in W)
$$

What are these things good for? I've said that one of the most basic problems in linear algebra is solving an equation like

$$
T x=c
$$

(QUESTION)
(with $c \in W$ specified); you are to find the unknown $x \in V$. If S is a left inverse of T, then we can apply S to this equation and get

$$
\begin{equation*}
x=I_{V}(x)=S T x=S c \tag{LEFT}
\end{equation*}
$$

What this calculation proves is
Proposition 2. Suppose S is a left inverse of T. Then the only possible solution of (QUESTION) is $x=S c$.

This does not say that $S c$ really is a solution; just that it's the only candidate for a solution. Sometimes that's useful information.

On the other hand, suppose S^{\prime} is a right inverse of T. Then we can try $x=S^{\prime} c$ and get

$$
\begin{equation*}
T x=T S^{\prime} c=I_{W} c=c \tag{RIGHT}
\end{equation*}
$$

This calculation proves
Proposition 3. Suppose S^{\prime} is a right inverse of T. Then $x=S^{\prime} c$ is a solution of (QUESTION).

This time the ambiguity is uniqueness: we have found one solution, but there may be others. Sometimes that's all we need.
Example. Suppose $V=W=\mathcal{P}(\mathbb{R})$ (polynomials), and $D=\frac{d}{d x}$. We would like to "undo" differentiation, so we integrate:

$$
(J p)(x)=\int_{0}^{x} p(t) d t
$$

The fundamental theorem of calculus says that the derivative of this integral is p; that is, $D J=I_{\mathcal{P}}$. So J is a right inverse of D; it provides a solution (not the only one!) of the differential equation $\frac{d q}{d x}=p$. If we try things in the other direction, there is a problem:

$$
J D(p)=\int_{0}^{x} p^{\prime}(t) d t=p(x)-p(0)
$$

That is, JD sends p to $p-p(0)$, which is not the same as p. So J is not a left inverse to D; since D has a nonzero null space, we'll see that no left inverse can exist.

Theorem 4. Suppose V and W are finite-dimensional, and that $T \in \mathcal{L}(V, W)$.

1) The operator T has a left inverse if and only if $\operatorname{Null}(T)=0$.
2) If S is a left inverse of T, then $\operatorname{Null}(S)$ is a complement to Range (T) in the sense of Proposition 2.13 in the text:

$$
W=\operatorname{Range}(T) \oplus \operatorname{Null}(S)
$$

3) Assuming that $\operatorname{Null}(T)=0$, there is a one-to-correspondence between left inverses of T and subspaces of W complementary to Range (T).
4) The operator T has a right inverse if and only if Range $(T)=W$.
5) If S^{\prime} is a right inverse of T, then $\operatorname{Range}\left(S^{\prime}\right)$ is a complement to $\operatorname{Null}(T)$ in the sense of Proposition 2.13 in the text:

$$
V=\operatorname{Null}(T) \oplus \operatorname{Range}\left(S^{\prime}\right)
$$

6) Assuming that $\operatorname{Range}(T)=W$, there is a one-to-correspondence between right inverses of T and subspaces of V complementary to $\operatorname{Null}(T)$.
7) If T has both a left and a right inverse, then the left and right inverses are unique and equal to each other. That, is there is a unique linear map $S \in \mathcal{L}(W, V)$ characterized by either of the two properties $S T=I_{V}$ or $T S=I_{W}$. If it has one of these properties, then it automatically has the other.

The theorem is also true exactly as stated for possibly infinite-dimensional V and W, but the proof requires a little more cleverness.

Proof. For (1), suppose first that a left inverse exists. According to Proposition 2, the equation $T x=0$ has at most one solution, namely $x=S 0=0$. That says precisely that $\operatorname{Null}(T)=0$. Conversely, suppose $\operatorname{Null}(T)=0$. Choose a basis $\left(v_{1}, \ldots, v_{n}\right)$ of V. By the proof of the rank plus nullity theorem, $\left(T v_{1}, \ldots, T v_{n}\right)$ is a basis of Range (T); so in particular it is a linearly independent set in W. We may therefore extend it to a basis

$$
\left(T v_{1}, \ldots, T v_{n}, w_{1}, \ldots w_{p}\right)
$$

of W.
To define a linear map S from W to V, we need to pick the images of these $n+p$ basis vectors; we are allowed to pick any vectors in V. If S is going to be a left inverse of T, we are forced to choose

$$
S\left(T v_{i}\right)=v_{i} ;
$$

the choices of $S w_{j}$ can be arbitrary. Since we have then arranged for the equation $S T v=v$ to be true for all elements of a basis of V, it must be true for all of V. Therefore S is a left inverse of T.

For (2), suppose $S T=I_{V}$; we need to prove the direct sum decomposition shown. So suppose $w \in W$. Define $v=S w$ and $r=T v=T S w \in W$. Then $r \in \operatorname{Range}(T)$, and

$$
n=w-r=w-T S w
$$

satisfies

$$
S n=S w-S T S w=S w-I_{V} S w=S w-S w=0
$$

so $n \in \operatorname{Null}(S)$. We have therefore written $w=r+n$ as the sum of an element of $\operatorname{Range}(T)$ and of $\operatorname{Null}(S)$. To prove that the sum is direct, we must show that $\operatorname{Null}(S) \cap \operatorname{Range}(T)=0$. So suppose $T v$ (in Range (T)) is also in $\operatorname{Null}(S)$. Then

$$
v=S T v=0
$$

(since $T v \in \operatorname{Null}(S)$) so also $T v=0$, as we wished to show.
For (3), we have seen that any left inverse gives a direct sum decomposition of W. Conversely, suppose that $W=\operatorname{Range}(T) \oplus N$ is a direct sum decomposition. Define a linear map S from W to V by

$$
S(T v+n)=v \quad(v \in V, n \in N) .
$$

This formula makes sense because there is only one v with image $T v($ by $\operatorname{Null}(T)=$ 0); it defines S on all of W by the direct sum hypothesis. This construction makes a left inverse S with $\operatorname{Null}(S)=N$, and in fact it is the only way to make a left inverse with this null space.

Parts (4)-(6) are proved in exactly the same way.
For (7), if the left and right inverses exist, then $\operatorname{Null}(T)=0$ and Range $(T)=W$. So the only possible complement to Range (T) is 0 , so the left inverse S is unique by (3); and the only possible complement to $\operatorname{Null}(T)$ is V, so the right inverse is unique by (6). To see that they are equal, apply S^{\prime} on the right to the equation $S T=I_{V}$; we get

$$
S^{\prime}=I_{V} S^{\prime}=S T S^{\prime}=S I_{W}=S,
$$

so the left and right inverses are equal.

MIT OpenCourseWare
http://ocw.mit.edu

18.700 Linear Algebra

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

